Introduction to UNIX “make”

The Unix utility make is a tool that automates the building of executable programs
from one or more source files. make uses a description file (called a makefile) supplied by
the programmer to determine which commands need to be executed in order to produce
the executable program requested. The description file contains the names of targets, for
example executable files or object files, along with a list of dependencies for each target. If
any file in the list of dependencies is newer than the target file, a list of command(s) given
on the following line(s) are executed. These command(s) presumably will produce the target
file by compiling and/or linking the files in the dependencies list. Files that appear in a
dependency list may also be a target elsewhere in the description file. Commonly an object
file will be in a dependency list for an executable file and also will be found as a target with
one or more source files in its dependency list.

Once you have a file that describes your program, you can build the program at any
time by entering the command make. make looks in the current directory for a file named
makefile (or, if no such file, it looks for a file named Makefile). On the make command-
line, a specific target to build can be specified as an argument. If no target is specified on
the command-line, make attempts to build the first target defined in makefile.

For each target in the description file, information describing that target is given in the
following format:

target : dependency-list
action(s)

The target is the name of a file. Targets can be executable files, object files, or program
text files. The dependency-list is a (possibly empty) list of prerequisite files used in some
way to create the target. The action(s) are one or more Unix commands that make uses to
construct or update the target. The actions are typically compile or link commands. If any
of the prerequisite files in the dependency-list are newer than the target, or the target does
not exist, the action is executed. The target must start in column 1. The action(s) must
be on the next line (no blank lines between it and the target/dependencies line) and the
action line(s) must start with a tab character. Multiple commands can be executed to make
a single target by giving each command on a separate line. A blank line signals the end of
the description for the current target.

Example

Consider a program that consists of a main source file, olal.cpp, two auxiliary files,
classl.cpp and class2. cpp, and their corresponding header files, class1.h and class2.h.
This system could be described by the following file:

File "makefile" used to build "olaX" executable.
Lines beginning with # are comments.
#

olaX: olaX.o classl.o class2.o0
c++ olaX.o classl.o class2.0 -o olaX

olaX.cpp must be recompiled if it or the classl.h header file have changed
olaX.o: olaX.cpp classl.h
c++ -c olaX.cpp

recompile classl.cpp if either classl.cpp, classl.h, or class2.h is
newer than classl.o. Recall that the "-c" option means compile-only,
thereby creating a .o object file, but do not run the linker.
classl.o: classl.cpp classl.h class2.h

c++ -c classl.cpp

recompile class2.cpp if either class2.cpp or class2.h is newer than class2.o
class2.0: class2.cpp class2.h
c++ -c class2.cpp

In the above example, program olaX.cpp directly uses some class(es) or function(s)
declared in classl.h and so must be recompiled whenever class1l.h has been changed. The
class1l.cpp implementation uses some class(es) or functions(s) declared in class2.h, as well
as its own header file, and so must be recompiled whenever class1.h or class2.h change. Of
course, if a source file itself changes, it must be recompiled.

A “#” in a line of a makefile starts a comment; it and the rest of the line are ignored. The
local comments above are included to help explain the example; in practice such comments
are usually omitted because the entries are self-explanatory to someone familiar with writing
makefiles. Global comments, describing what the makefile is for, are always welcome.

For more information, see the man page for make (man make).

