
Library of Congress Cataloging-in-Publication Data

Carrano, Frank M.
Data abstraction and problem solving with C++: walls and mirrors / Frank M. Carrano,

Janet J. Prichard.—3rd ed.
p. cm.

ISBN 0-201-74119-9 (alk. paper)
1. C++ (Computer program language) 2. Abstract data types. 3. Problem solving—Data
Processing. I. Prichard, Janet J. II. Title.

39

QA76.73.C153 C38 2001
005.7'3—dc21 2001027940

CIP

Copyright © 2002 by Pearson Education, Inc.

Readability. For a program to be easy to follow, it should have a good
structure and design, a good choice of identifiers, good indentation and
use of blank lines, and good documentation. You should avoid clever
programming tricks that save a little computer time at the expense of
much human time. You will see examples of these points in programs
throughout the book.

Choose identifiers that describe their purpose, that is, are self-
documenting. Distinguish between keywords, such as int, and user-
defined identifiers. This book uses the following conventions:

• Keywords are lowercase and appear in boldface. Identifier style

• Names of standard functions are lowercase.

• User-defined identifiers use both upper- and lowercase letters, as
follows:

• Class names are nouns, with each word in the identifier capi-
talized.

• Function names within a class are verbs, with the first letter
lowercase and subsequent internal words capitalized.

• Variables begin with a lowercase letter, with subsequent words
in the identifier capitalized.

• Data types declared in a typedef statement and names of
structures and enumerations each begin with an uppercase
letter.

• Named constants and enumerators are entirely uppercase and
use underscores to separate words.

• Two other naming conventions are followed as a learning aid:

• Data types declared in a typedef statement end in Type. Two learning aids
m Exception names end in Exception.

Use a good indentation style to enhance the readability of a program.
The layout of a program should make it easy for a reader to identify the
program's modules. Use blank lines to offset each function. Also, within
both functions and the main program, you should offset with blank
lines and indent individual blocks of code visibly. These blocks are
generally—but are not limited to—the actions performed within a
control structure, such as a while loop or an if statement.



40 CHAPTER 1 PRINCIPLES OF PROGRAMMING AND SOFTWARE ENGINEERING

You can choose from among several good indentation styles. The
four most important general requirements of an indentation style are
that

Guidelines for indentation style • Blocks should be indented sufficiently so that they stand out
clearly.

• Indentation should be consistent: Always indent the same type
of construct in the same manner.

• The indentation style should provide a reasonable way to handle
the problem of rightward drift, the problem of nested blocks
bumping against the right-hand margin of the page.

• In a compound statement, the open and closed braces should
line up:

{ <statementi>
<statement2>

<statementn>
}

Although it is preferable to place the open brace on its own line,
space restrictions in this book prevent doing so except at the
beginning of a function's body.

Within these guidelines there is room for personal taste. Here is a
summary of the style you will see in this book:

Indentation style in this book • A for or while statement is written for a simple action as

while (expression)
statement

and for a compound action as

while (expression)
{ statements
} II end while

• A do statement is written for a simple action as

do
statement

wh i 1 e (express ion);

and for a compound action as

do
{ statements
} while (expression);



A SUMMARY OF KEY ISSUES IN PROGRAMMING 41

• An if statement is written for simple actions as

if (expression)
statement^

else
statement^

and for compound actions as

if (expression)
{ statements

else
{ statements
} // end if

One special use of the if statement warrants another style.
Nested if statements that choose among three or more differ-
ent courses of action, such as

if (conditioni)

else if (condition2)
actionz

else if (condition3)
action^

are written as

if (conditioni)

else if (condition)
action^

else if (condition?,)
action^

This indentation style better reflects the nature of the construct,
which is like a generalized switch statement:

case conditioni : actioni; break;

case condition^ • action^; break;

case condition^ : action3; break;

Braces are used to increase readability, even when they are not a
syntactic necessity. For example, in the construct

while (expression)
{ if (conditioni)

statement
else

statement2

} // end while



42 CHAPTER 1 PRINCIPLES OF PROGRAMMING AND SOFTWARE ENGINEERING

the braces are syntactically unnecessary because an if is a single
statement. However, the braces highlight the scope of the while
loop.

Documentation. A program should be well documented so that others
can read, use, and modify it easily. Many acceptable styles for documen-
tation are in use today, and exactly what you should include often
depends on the particular program or your individual circumstances.
The following are the essential features of any program's documentation:

KEY CONCEPTS Essential Features of Program Documentation

1. An initial comment for the program that includes

a. Statement of purpose
b. Author and date
c. Description of the program's input and output
d. Description of how to use the program
e. Assumptions such as the type of data expected
f. Statement of exceptions; that is, what could go wrong
g. Brief description of the major classes

2. Initial comments in each class that state its purpose and describe the
data contained in the class (constants and variables)

3. Initial comments in each function that state its purpose, preconditions,
postconditions, and functions called

4. Comments in the body of each function to explain important features or
subtle logic

Consider who will read your
comments when you write them

You benefit from your own
documentation by writing
it now instead of later

Beginning programmers tend to downplay the importance of docu-
mentation because the computer does not read comments. By now,
you should realize that people also read programs. Your comments
must be clear enough for someone else to either use your function in a
program or modify it. Thus, some of your comments are for people
who want to use your function, while others are for people who will
revise its implementation. You should distinguish between different
kinds of comments.

Beginners have a tendency to document programs as a last step. You
should, however, write documentation as you develop the program. Since
the task of writing a large program might extend over a period of several
weeks, you may find that the function that seemed so obvious when you
wrote it last week will seem confusing when you try to revise it next week.
Why not benefit from your own documentation by writing it now rather
than later?


