
1

Mile-long hurdle race

Suppose that we want to program Reeborg to run a one-mile
long hurdle race, where vertical wall sections represent
hurdles. The hurdles are only one block high and are y g
randomly placed between any two corners in the race
course. One possible race course is shown below.

Strategy?

Reeborg could run this race by jumping up
between every pair of corners. Is this an
appropriate strategy?appropriate strategy?

Jumping up between corners, whether a hurdle
was between them or not, would slow Reeborg
down. Instead, program Reeborg to move
straight ahead when it can, and to jump over
hurdles only when it must. The program could
then consist of 8 advance_a_corner()
instructions. The definition of
advance_a_corner() can be written using
stepwise refinement as follows:

def advance_a_corner():
if front_is_clear():

move()
else

jump_hurdle()

Notice we have used a new command
h b d fi djump_hurdle()that must now be defined.

We continue our refinement by defining
jump_hurdle() to be

def jump_hurdle():
jump_up()
move()
jump_down()

To finish the problem, we write jump_up()and
jump_down()

def jump_up(): def jump_down():
turn_left() turn_right()
move() move()
turn_right() turn_left()

2

Instructions that repeat

• Reeborg often has to repeat instructions.
For example, to run the hurdle race, the
instruction advance a corner()had _ _
to be repeated 8 times.

• There are several statements built into
Reeborg’s vocabulary that allow one or a
suite of instructions to be repeated.

for

for is used when it is necessary to have Reeborg
perform an instruction (or suite of instructions) a
certain number of times.

We previously handled this problem by writing
the instruction as many times as needed. The new
instruction has the following form:

for x in range(iteration-amount):
<loop body suite of statement(s)>

where iteration-amount is the number of
times the loop body statements are to be repeated.

For example, the solution of the hurdle race problem can
now be written as one of the following:

revised previously

for x in range(8): advance_a_corner()
advance a corner() advance a corner()_ _ () _ _ ()

turn_off() advance_a_corner()
advance_a_corner()
advance_a_corner()
advance_a_corner()
advance_a_corner()
advance_a_corner()
turn_off()

Example:

def turn_right():
for x in range(3):

turn_left()

The function turn left() is repeated threeThe function turn_left() is repeated three
times, which is equivalent to a right turn.

while

There are many situations where Reeborg needs to
repeat an instruction but it is not yet known how
often. For example, if we wish for Reeborg to pick
up a pile of beepers of arbitrary size, he needs to
repeatedly execute the pick_beeper() command,
but because we do not know in advance the
number of beepers in the pile, we do not know
exactly how often to execute that command.

3

The WHILE statement is made-to-order for this situation:
you can use it to tell Reeborg to repeat something while a
certain predicate is True; for example to pick up
beepers while there are any left to pick up.

while predicate:
<loop body suite of statement(s)>

The predicate that appears in the WHILE statement comes
from the same list of predicates that Reeborg can use in an
IF statement.

• Reeborg executes a WHILE by first checking
the predicate.

• If the predicate is True, then the loop body is
executed and Reeborg loops back to the
predicate to check it again.

Thi ti d l th• This continues over and over as long as the
predicate evaluates to True.

• If the predicate evaluates to False, Reeborg is
finished with the WHILE statement and begins
executing the instruction that immediately
follows the WHILE statement.

• NOTE: If the predicate is initially False the
statement(s) in the loop body will not be
executed at all.

• For this reason, WHILE loops are sometimes
called zero-or-more times loops.

Examples:

def clear_corner_of_beepers():
while on_beeper():

pick_beeper()

Reeborg would pick up all beepers on the current
corner, regardless how many there are (if it is a
finite number, at least).

Building a WHILE Loop

• Step 1: Identify the one test that must be True when
Reeborg is finished with the loop.
In the above problem, Reeborg must pick all beepers
on the corner If we consider only tests that involveon the corner. If we consider only tests that involve
beepers, we can choose among four:
carrying_beepers, not carrying_beepers,
on_beeper(), and not on_beeper()
Which one is the test we want?

• Step 2: Use the opposite form of the test
identified in step 1 as the loop predicate.

This step implies that we should use
on_beeper(). The WHILE instruction
continues to execute the loop body as longcontinues to execute the loop body as long
as the test is True and stops when it is
False.

4

• Step 3: Do whatever is required before
or after the WHILE is executed to ensure
we solve the given problem.

In this example, we have to do nothing
before or after the loop. However in
other situations, we may miss one
iteration of the loop and have to “clean
things up,” which can be done either
before or after the WHILE.

• Step 4: Do the minimum that is needed to
ensure that the test eventually evaluates
to False so that the WHILE loop stops.
Something within the body of the loop must

allow the test eventually to evaluate to False
or the loop will run forever.p

This implies that there must be some
instruction (or sequence or instructions)
within the loop that is related to the test.

Thus in our example, because we are testing
for on_beeper() we must pick one (and
only one) beeper somewhere in the loop.

Apply these four steps to a new problem. Reeborg
is somewhere in the world facing south. One beeper
is on every corner between Reeborg’s current
position and the southern boundary wall. There is
no beeper on the corner on which he is currently
standing. Write a new instruction,
clear_beepers_to_wall, to pick all the
beepers.p
To solve any problem, ask questions:
What do we know about Reeborg’s initial
situation?

Reeborg is facing south
Reeborg is an unknown distance from the southern
boundary wall
Each corner between Reeborg and the southern boundary
wall has one beeper.

Does any of this information provide insight toward
a solution?

Yes – Reeborg can travel forward until it reaches the
southern boundary wall. It can pick a beeper from each
corner as it travels.

What Reeborg instruction can we use to keep
R b t li th d til it h thReeborg traveling southward until it reaches the
southern boundary wall?

Since traveling to the southern boundary wall requires
an unknown number of move instructions, we can use a
WHILE loop.

Four Step Process

• Step 1: Identify the one test that must be
True when Reeborg is finished with the
loop.p
Reeborg will be at the southern boundary

wall, so the test not front_is_clear
will be True.

• Step 2: Use the opposite form of the test
identified in step 1.
The opposite of not front_is_clear is

simply front_is_clear

St 3 D h t i i d b f• Step 3: Do whatever is required before
or after the WHILE is executed to ensure
we solve the given problem. As Reeborg
is already facing south, we do not have to
do anything.

5

• Step 4: Do the minimum that is needed
to ensure that the test eventually
evaluates to False so that the WHILE
loop stops.
Reeborg must move forward
one block then pick a beeper.p p

Based on this discussion, we can write the following
new instruction:

def clear_beepers_to_wall():
while front_is_clear():

move()
pick_beeper()

A while loop can occur in a while loop:

def pick_all_beepers_to_wall():
while on_beeper():

pick_beeper()
while front_is_clear():

move()
while on_beeper():

pick beeper()pick_beeper()

The logic of these nested WHILE statements has Reeborg
pick up all beepers between him and the wall ahead of him,
including beepers on Reeborg's beginning street corner.
Reeborg stops in front of the wall.

