
1

Extending Reeborg’s
Vocabularyy

Why should we extend 
Reeborg’s vocabulary?

• Reeborg’s vocabulary is limited.  

• For example, Reeborg does not understand 
a turn right() commanda turn_right() command.  

He can only turn right by executing three 
turn_left() commands.

• As a second example, suppose we need to 
program Reeborg to travel over vast distances.  

• Assume that the robot must move east ten miles 
(a mile is eight blocks long), pick up a beeper, 
and then move another ten miles north.

• Reeborg understands how to move a block, butReeborg understands how to move a block, but 
not a mile.

• Conversion from miles to blocks is 
straightforward, but results in a very long and 
unreadable program.   How many move()
instructions would be included?

Reeborg can “learn” new 
commands

• Our programs can furnish him with a 
dictionary of useful instruction names and their 
definitions.

• Given this ability to extend Reeborg’s 
vocabulary, we can solve our problems using 
instructions more natural to our way of 
thinking.

Defining a new function

def identifier():
statement(s) that define the function( ) f f

. . .

. . .



2

• Using this function definition mechanism 
to create a kind of dictionary for 
Reeborg, new commands can be defined 
to extend Reeborg’s vocabulary by 
writing functions.

• For example although Reeborg does not• For example, although Reeborg does not 
have a predefined turn_right()
command, we can user-define this 
instruction by writing the function shown 
on the next slide.

def turn_right():
turn_left()
turn left()turn_left()
turn_left()

• Similarly, we can 
define move_a_mile()
to mean eight move()
instructions.

def move_a_mile():
move()
move()
move()
move()
move()

• Thus instead of 160 
move() instructions we 
would need only 20 
move_a_mile()
instructions.

move()
move()
move()
move()

Benefits of extending Reeborg’s 
vocabulary

• We can use instructions “natural” to us.

• As in the 20 mile problem, the size of our 
programs can be significantly reducedprograms can be significantly reduced.

• The smaller program is much easier to 
read and understand.

# Comments describing
# what program does.

move()

pick beeper()

turn_left()

turn_left()

turn_left()

move()

turn_left()

turn_left()

turn_left()

move()pick_beeper()

move()

turn_left()

move()

move()

put_beeper()

move()

move()

turn_left()

turn_left()

turn_left()

turn_off()

# Comments describing 

# what program does.

move()

pick beeper()

turn_left()

turn_left()

turn_left()

move()

turn_left()

turn_left()

turn_left()

move()

turn_right()

turn_right()

pick_beeper()

move()

turn_left()

move()

move()

put_beeper()

move()

move()

turn_left()

turn_left()

turn_left()

turn_off()

turn_right()



3

# Comments describing

# what program does.

def turn_right():
turn_left()
turn_left()
turn_left()

move()

i k b ()

turn_right()

move()

turn_right()

move()pick_beeper()

move()

turn_left()

move()

move()

put_beeper()

move()

move()

turn_right()

turn_off()

# Comments describing

# what program does.

def turn_right():
turn_left()
turn_left()
turn_left()

move()

i k b ()

turn_right()

move()

turn_right()

move()

turn_right()

turn_off()

pick_beeper()

move()

turn_left()

move()

move()

put_beeper()

move()

A Stair Cleaning Task

• Reeborg is supposed 
to climb stairs and 
pick up the beepers 

h Whon each step. When 
he is done, he should 
be standing on the 
top step, facing East. 

If we invent a new instruction called climb_a_step()
then the program can be written as:

climb_a_step()
pick_beeper()
climb_a_step()
pick_beeper()
climb_a_step()
pick_beeper()
turn_off()

Now we must write the function climb_a_step()

def climb_a_step():
turn_left()
move()
turn_right()
move()move()

Notice that this function depends on 
turn_right() , an instruction that we wrote 
previously.

So that we can place our “main” code at the beginning of our 
program, we enclose that code in a main() function that we then 
invoke at the bottom of our program.

def main():
climb_a_step()
pick_beeper()
climb_a_step()
pick beeper()pick_beeper()
climb_a_step()
pick_beeper()
turn_off()



4

So that we can place our “main” code at the beginning of our 
program, we enclose that code in a main() function that we then 
invoke at the bottom of our program.

def main():
climb_a_step()
pick_beeper()
climb_a_step()
pick beeper()

# A Stair Cleaning Program

def  main():

climb_a_step() 

pick_beeper()

climb_a_step()

pick_beeper()

climb_a_step()

pick_beeper()

turn_off() 

pick_beeper()
climb_a_step()
pick_beeper()
turn_off()

# Climb on to next step

def climb_a_step():

turn_left()

move()

turn_right()

move() 

# Pivot Reeborg 90 degrees to right

def  turn_right():

turn_left()

turn_left()

turn_left()

# Invoke main() 

main()

Recapping how to do
function definitions

• The reserved word def starts a new function 
followed by the name of the function followed 
by parentheses and a colon.  

• The name of the function specifies what the• The name of the function specifies what the 
procedure is intended to do.

• The statements that perform the task are listed 
after the function header indented relative to 
the header. These statements specify how the 
new instruction does what the name implies.

• The two must match exactly – otherwise one or 
both need to be changed.

• To demonstrate this, there are no 
restrictions prohibiting the following 
instructions definition:

def turn_right():
turn_left()
turn left()turn_left()

• This is a perfectly legal definition, but it is 
wrong because it does not accomplish what it 
should.


