TASK: Every moming Reeborg is awakened in bed when his newspaper, represented

by a beeper, is thrown onto the front porch of lus house, Program Reeborg to retrieve
his paper and bring it back to bed with him. The figure below illustrates the initial
situation. (Newspaper is at street 3, avenue 3.) The final situation must have Reeborg
back in bed (same comer, same direction) with the newspaper (that is, in his pocket).
ST.

i l

st

T |

[T=H

5 |

47 l

T I

ZI l

11 I

12345678 9104V,

Initial situation for the Newspaper Retrieval Task

Extending Reeborg’s
Vocabulary

Why should we extend
Reeborg’s vocabulary?

» Reeborg’s vocabulary is limited.

» For example, Reeborg does not understand
aturn_right() command.
He can only turn right by executing three
turn_left() commands.

As a second example, suppose we need to
program Reeborg to travel over vast distances.
Assume that the robot must move east ten miles
(a mile is eight blocks long), pick up a beeper,
and then move another ten miles north.
Reeborg understands how to move a block, but
not a mile.

Conversion from miles to blocks is
straightforward, but results in a very long and
unreadable program. How many move()
instructions would be included?

Reeborg can “learn” new
commands

e Our programs can furnish him with a
dictionary of useful instruction names and their
definitions.

« Given this ability to extend Reeborg’s
vocabulary, we can solve our problems using
instructions more natural to our way of
thinking.

Defining a new function

def identifier():
statement(s) that define the function

« Using this function definition mechanism
to create a kind of dictionary for
Reeborg, new commands can be defined
to extend Reeborg’s vocabulary by
writing functions.

» For example, although Reeborg does not
have a predefined turn_right()
command, we can user-define this
instruction by writing the function shown
on the next slide.

def turn_right():
turn_left()
turn_left()
turn_left()

« Similarly, we can
define move_a_mile() move()
to mean eight move()

def move_a_mile():

Benefits of extending Reeborg’s

vocabulary

* We can use instructions “natural” to us.
 As in the 20 mile problem, the size of our

programs can be significantly reduced.

The smaller program is much easier to
read and understand.

instructions. move()
move()
move()
move()
Thus instead of 160 move()
move() instructions we move()
would need only 20 move()
move_a_mile()
instructions.
Comments describing
what program does. turn_left()
turn_left()
turn_left()
move()
turn_left()
turn_left()
move() turn_left()
pick_beeper() move()
move() turn_left()
turn_left() turn_left()
move() turn_left()
move() turn_off()
put_beeper()
move()

Comments describing

what program does. turn_left() \
turn_left() L turn_right()
turn_left() J
move()
turn_left())
turn_left() J turn_right()
move() turn_left()
pick_beeper() move()
move() turn_left()
turn_left() turn_left() l turn_right()
move() turn_left())
move() turn_off()

put_beeper()
move()

Comments describing
what program does.
turn_right()
def turn_right():
turn_left()
turn_left()
turn_left()

move()

turn_right()
move()
pick_beeper() move()
move()
turn_left() turn_right()
move()
move() turn_off()
put_beeper()
move()

Comments describing
what program does.

turn_right()
def turn_right():

turn_left() move(_)
turn_left() turn_right()
turn_left() move()
turn_right()

move() turn_off()

pick_beeper()

move()

turn_left()

move()

move()

put_beeper()

move()

A Stair Cleaning Task

* Reeborg is supposed
to climb stairs and
pick up the beepers
on each step. When
he is done, he should
be standing on the
top step, facing East.

&
-
|

BN oW oR o e N
@

If we invent a new instruction called climb_a_step()
then the program can be written as:

climb_a_step()
pick_beeper()
climb_a_step()
pick_beeper()
climb_a_step()
pick_beeper()
turn_off()

Now we must write the function climb_a_step()

def climb_a_step():
turn_left()
move()
turn_right()
move()

Notice that this function depends on
turn_right() , an instruction that we wrote
previously.

So that we can place our “main” code at the beginning of our
program, we enclose that code in a main() function that we then
invoke at the bottom of our program.

def main():

climb_a_step()
pick_beeper()
climb_a_step()
pick_beeper()
climb_a_step()
pick_beeper()
turn_off()

So that we can place our “main” code at the beginning of our
program, we enclose that code in a main() function that we then
invoke at the bottom of our program.

def main():
climb_a_step()
pick_beeper()
climb_a_step()
pick_beeper()
climb_a_step()
pick_beeper()
turn_off()

Invoke main()

Recapping how to do
function definitions

The reserved word def starts a new function
followed by the name of the function followed
by parentheses and a colon.

The name of the function specifies what the
procedure is intended to do.

The statements that perform the task are listed
after the function header indented relative to
the header. These statements specify how the
new instruction does what the name implies.

The two must match exactly — otherwise one or
both need to be changed.

To demonstrate this, there are no
restrictions prohibiting the following
instructions definition:
def turn_right():
turn_left()
turn_left()

This is a perfectly legal definition, but it is
wrong because it does not accomplish what it
should.

