2/27/2018

The make utility What is make?

(original pr f Alark Joshi)

* Make is a utility that is included with * Make is non-procedural

Linux/Unix operating systems — You tell make what you want (e.g. a particular

* Itis a command generator class file or executable)

* |tis designed to help you compile large — You provide a set of rules showing dependencies
projects between files

— Make uses the rules to get the job done

Why use make? What does make do?

* For large programs, recompiling all the pieces Make uses a file called Makefile (or makefile)
of the program can be very resource intensive to determine what needs to be recompiled
* But if the program is complex, determining Makefile contains a set of rules
exactly what needs to be recompiled can be When you run make, it uses the rules in the
a time-consuming (and error-prone) task Makefile to determine what needs to be done
* The make utility was written to assist with this Make does the minimum amount of work

process needed to get the job done

Rules in a Makefile

e A typical rule has the form
target: dependency list
command list

target can be the name of a file that needs to be

created (ora “phony” name that can be used to specify which
command to execute)

The dependency list is a space separated list of files
that the target depends on in some way

The command list is one or more linux commands
needed to accomplish the task of creating the target

Example

Dependencies for a “list” program:

Main.c and TestList.c include List.h, Node.h,
Job.h, and common.h

List.c includes List.h, Node.h, Job.h, and
common.h

Node.c includes Node.h, Job.h, and common.h
Job.c includes common.h

2/27/2018

Rules in a Makefile

e Each command must be indented with a
* Both dependency lists and commands can be

continued onto another line by putting a \ at
the end of the first line

A # is used to start a comment in a makefile
— The comment consists of the remainder of the line

Rules for the “list” program

Brute-force approach
TestList: Testlist.o List.o Node.o Job.o

gcc -Wall -g -o TestList TestList.o List.o Node.o Job.o

TestList.o: TestlList.c List.h Node.h Job.h common.h

gec -Wall -g -c Testlist.c

List.o: List.c List.h Node.h Job.h common.h

gec -Wall -g -c List.c

Node.o: Node.c Node.h Job.h common.h

gcc -Wall -g -c Neode.c

Job.o: Job.c Job.h common.h

gcc -Wall -g -c Job.c

2/27/2018

How make works How make works

* When you type make without a target name e If the current version of target is newer than
will assume you mean to make the first real all the files it depends on, make will do
target in the makefile nothing.

When you type make target, the make utility e |f a target file is older than any of the files that
will look at the rule for target it depends on, the command following the

make will recursively search through the rules
for all the dependencies to determine what
has been modified

File "makefile" used to build "ola207" executable

Macros
CXX = g++ -std=c++11 —pedantic

Some’gmes, you find yourself using the same 0la207: bakery.o bakeryPrint.o

stuff in lots of command actions---macros $(CXX) -g bakery.o bakeryPrint.o -0 0la207

simplify things
* Define macro

CC = gcc

CFLAGS = -0 —Wwall —g bakeryPrint.o: bakeryPrint.cpp bakeryPrint.h bakeryConstants.h

PROGS = list TestList $(CXX) -g -c bakeryPrint.cpp

* Then use the macro by typing S(macroname)
$(CC) $(CFLAGS) —c List.c

bakery.o: bakery.cpp bakeryPrint.h bakeryConstants.h
S(CXX) -g -c bakery.cpp

2/27/2018

Phony Targets Example

* Phony targets are targets that do not all: subdirs
correspond to a file subdirs:

cd bad; make

cd almost-generic; make
clean: cd generic-with-library; make

cd generic; make

rm —F *.o

cd bad; make clean

cd almost-generic; make clean

cd generic-with-library/; make clean
cd generic; make clean

(Optional) Substitution Rules

Advanced Stuff Often, you will find that your Makefile has many
follows: similar commands
You can use patterns to define rules and
commands for such cases
For example, we could use the rule
%.o - %.c
$(CC) $(CFLAGS) —c $<
Which says that every .o file depends on the

corresponding .c file and can be created from it
with the command below the rule

Substitution Rules - Internal macros

% - any name (the same in all occurrences)

S@ - The name of the current target

S< - The first dependency for the current target
SA - All the dependencies for the current target

%.0 - %.c
$(CC) $(CFLAGS) —c $<

hello: hello.o
$(CC) $(CFLAGS) $< -0 %0

A More Advanced Example

¢ With macros, suffix rules and phony targets
INCLUDE=.

CC=gcc

CFLAGS=-Wall -g -I$(INCLUDE)

all: TestlList SimpleTest

TestList: TestlList.o Object.o List.o Node.o

$(CC) S(CFLAGS) -o $@ TestList.o Object.o List.o Node.o

SimpleTest: SimpleTest.o List.o Node.o
$(CC) S(CFLAGS) -o %@ SimpleTest.o List.o Node.o

%.0 @ %.C
$(CC) $(CFLAGS) -c $<

clean:
rm --force list *.o TestlList SimpleTest

Suffix Rules

¢ A suffix rule identifies suffixes that make should

recognizes
-SUFFIXES: .0 .c

Another rule shows how files with suffixes are
related
.C.0 :

$(CC) $(CFLAGS) —c $<
Think of this as saying the .o file is created from
the corresponding .c file using the given
command

Taking the drudgery out of

dependencies

Dependencies for a .o file should include all the
user written header files that it includes

For a big project, getting all of these right can
take some time

The gcc command has an option -MMD which
tells it to compute the dependencies.

These are stored in a file with the suffix .d

Include the .d file into the Makefile using
-include *.d

2/27/2018

2/27/2018

Multiple rules for a target

* If there is more that one rule for a given
target, make will combine them.

* The rules can be specified in any order in the
Makefile

