
2/27/2018

1

Themake utility
(original presentation courtesy of Alark Joshi)

• Make is a utility that is included with
Li /U i ti tLinux/Unix operating systems

• It is a command generator
• It is designed to help you compile large
projects

What ismake?

• Make is non‐procedural
– You tell make what you want (e.g. a particular
class file or executable)

– You provide a set of rules showing dependencies
between files

– Make uses the rules to get the job done

Why usemake?

• For large programs, recompiling all the pieces
of the program can be very resource intensive

• But if the program is complex, determining
exactly what needs to be recompiled can be
a time‐consuming (and error‐prone) task

• Themake utility was written to assist with this• Themake utility was written to assist with this
process

What doesmake do?

• Make uses a file calledMakefile (or makefile)
to determine what needs to be recompiled

• Makefile contains a set of rules
• When you runmake, it uses the rules in the
Makefile to determine what needs to be done
M k d h i i f k• Make does the minimum amount of work
needed to get the job done

2/27/2018

2

Rules in a Makefile
• A typical rule has the form
target: dependency listtarget: dependency list

command list
• target can be the name of a file that needs to be
created (or a “phony” name that can be used to specify which
command to execute)

• The dependency list is a space separated list of files
h h d dthat the target depends on in some way

• The command list is one or more linux commands
needed to accomplish the task of creating the target

Rules in a Makefile

• Each command must be indented with a tab
• Both dependency lists and commands can be
continued onto another line by putting a \ at
the end of the first line

• A # is used to start a comment in a makefile
Th t i t f th i d f th li– The comment consists of the remainder of the line

Example

• Dependencies for a “list” program:
• Main.c and TestList.c include List.h, Node.h,
Job.h, and common.h

• List.c includes List.h, Node.h, Job.h, and
common.h
N d i l d N d h J b h d h• Node.c includes Node.h, Job.h, and common.h

• Job.c includes common.h

Rules for the “list” program

• Brute‐force approach

2/27/2018

3

Howmake works

• When you typemake without a target name
will assume you mean to make the first real
target in the makefile

• When you typemake target, the make utility
will look at the rule for target

• make will recursively search through the rules• make will recursively search through the rules
for all the dependencies to determine what
has been modified

Howmake works

• If the current version of target is newer than
all the files it depends on, make will do
nothing.

• If a target file is older than any of the files that
it depends on, the command following the
rule will be executedrule will be executed

Macros
• Sometimes, you find yourself using the same
stuff in lots of command actions macrosstuff in lots of command actions‐‐‐macros
simplify things

• Define macro
CC = gcc
CFLAGS = -O –Wall –g

li iPROGS = list TestList

• Then use the macro by typing $(macroname)
$(CC) $(CFLAGS) –c List.c

File "makefile" used to build "ola207" executable

CXX = g++ ‐std=c++11 –pedantic

ola207: bakery.o bakeryPrint.o
$() b k b k l$(CXX) ‐g bakery.o bakeryPrint.o ‐o ola207

bakery.o: bakery.cpp bakeryPrint.h bakeryConstants.h
$(CXX) ‐g ‐c bakery.cpp

bakeryPrint.o: bakeryPrint.cpp bakeryPrint.h bakeryConstants.h
$(CXX) g c bakeryPrint cpp$(CXX) ‐g ‐c bakeryPrint.cpp

2/27/2018

4

Phony Targets

• Phony targets are targets that do not
correspond to a file

clean:
rm –f *.o

Example

all: subdirs

subdirs:
cd bad; make
cd almost-generic; make
cd generic-with-library; make
cd generic; make

clean:
cd bad; make clean;
cd almost-generic; make clean
cd generic-with-library/; make clean
cd generic; make clean

(Optional)
Advanced Stuff

follows:follows:

Substitution Rules
• Often, you will find that your Makefile has many
similar commandssimilar commands

• You can use patterns to define rules and
commands for such cases

• For example, we could use the rule
%.o : %.c

$(CC) $(CFLAGS) –c $<$(CC) $(CFLAGS) c $<

• Which says that every .o file depends on the
corresponding .c file and can be created from it
with the command below the rule

2/27/2018

5

Substitution Rules ‐ Internal macros

• % ‐ any name (the same in all occurrences)
• $@ The name of the current target• $@ ‐ The name of the current target
• $< ‐ The first dependency for the current target
• $^ ‐ All the dependencies for the current target

%.o : %.c
$(CC) $(CFLAGS) –c $<

hello:
$(CC)

hello.o
$(CFLAGS) $< -o $@

Suffix Rules
• A suffix rule identifies suffixes that make should
recognizesrecognizes

.SUFFIXES: .o .c
• Another rule shows how files with suffixes are
related
.c.o :

$(CC) $(CFLAGS) –c $<$(CC) $(CFLAGS) c $<

• Think of this as saying the .o file is created from
the corresponding .c file using the given
command

A More Advanced Example

• With macros, suffix rules and phony targets

Taking the drudgery out of
dependencies

• Dependencies for a .o file should include all the
user written header files that it includesuser written header files that it includes

• For a big project, getting all of these right can
take some time

• The gcc command has an option ‐MMDwhich
tells it to compute the dependencies.

• These are stored in a file with the suffix d• These are stored in a file with the suffix .d
• Include the .d file into the Makefile using
-include *.d

2/27/2018

6

Multiple rules for a target

• If there is more that one rule for a given
target,make will combine them.

• The rules can be specified in any order in the
Makefile

