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a biologically-based mechanism for dimensional attentionis proposed, and the fit of this
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CHAPTER I

INTRODUCTION

When I wake up in the morning and go into the kitchen, I am surrounded by an array

of everyday kitchen utensils and appliances. Assuming I intend to make a cup of coffee,

I need to find a coffee mug. The process of identifying which objects in the kitchen are

coffee mugs and which are not is critical to my success in making the cup of coffee. This is

a process called categorization. Other examples of tasks involving categorization include

picking out all of the red trucks in a parking lot, or separating your winter clothing from

your summer clothing. In both cases, various objects are placed under scrutiny and, based

on their makeup, one makes a decision as to whether they belong in one category or another.

Importantly, I had to learn what made something a coffee mug before I could find it in my

kitchen. I also needed to learn the difference between cars,vans, and trucks to find them

in the parking lot. Over time I had to learn what characteristics of these objects made them

belong to these various categories. This process is known ascategory learning.

Category learning has been studies by psychologists for many years. In a typical cate-

gory learning experiment, learners are presented with stimulus objects, one at a time, and

are asked to make classification judgments for each. Immediately following each judg-

ment, feedback is provided, typically informing the learner of the correct category label for

the preceding stimulus. This sequence of events is done repetitively, often with the same

stimuli being observed many times over. Once learning is complete, categorization judg-

ments are made without any feedback, and this can provide a window into the structure

of the learned category knowledge. During this part of the experiment, the frequency with

which each stimulus is classified as a member of each categorycan be observed. This offers

some insight into the criteria that subjects are using to categorize the stimuli. If the stimuli

used in this period are novel, having never been the focus of atrial in which feedback was

provided, then we can get an even better view of the general category knowledge that was
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acquired. This is possible because these stimuli will forcethe subjects to generalize their

knowledge to the new stimuli, and their observable responses will communicate the nature

of this general knowledge.

A coffee mug has various features that allow me to categorizeit as such. For instance,

it has a certain shape, size, color, or texture. However, thecolor of a coffee mug can

vary significantly, and yet I do not stop calling it a coffee mug. This means that when I

was learning to categorize coffee mugs, I had to learn that the dimension of color was not

important to this decision. However, if the composition dimension of the mug was changed,

so that it was now made of glass instead of ceramic, then I would no longer call it a coffee

mug. These are examples of a commonly observed property of category learning known

as dimensional attention. Dimensional attention is where dimensions used to categorize

objects become more or less salient during the process of category learning.

Human category learning performance cannot be easily explained without recourse to

a mechanism for selective dimensional attention (Shepard et al., 1961). Dimensional at-

tention is the cognitive process which emphasizes task relevant stimulus dimensions while

deemphasizing others. Thus, contemporary formal models ofcategorization, such as the

Generalized Context Model (GCM) (Nosofsky, 1984), have incorporated adaptable dimen-

sional attention parameters. By adjusting these parameters in a category-specific fashion,

the GCM has repeatedly provided excellent fits to human data reflecting the frequency (or

probability) with which each stimulus is recognized as an instance of a target category.

The GCM has been used to explain a variety of phenomena in the category learning

domain. It explains why people strongly associate the ”average” stimulus belonging to

a category more than stimuli outside of the category with itscategory label, even if that

prototypical ”average” stimulus has never been viewed before. The GCM also captures

differences in categorization performance related to the frequency with which individual

stimulus items are observed. This is accomplished by relating information about individual
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stimuli in memory, allowing the GCM to simultaneously account for patterns of catego-

rization and recognition memory behavior (Nosofsky, 1984).

When the GCM is applied to experimental results, dimensional attention parameters

are freely varied to optimize the fit of the model to human data. This means that, while

the GCM provides a powerful account of learned categorization performance, it offers no

explanation for how dimensional attention is adjusted overthe course of learning.

This shortcoming of the GCM has been addressed by a connectionist model called AL-

COVE (Kruschke, 1992). ALCOVE incorporates the GCM’s formalization of category

knowledge, but it also provides a precise algorithm for modifying the attentional “weight”

assigned to each stimulus dimension, based on feedback provided to learners on their cate-

gorization judgments.

The ALCOVE model uses the feedback provided during trainingto calculate an “er-

ror signal”, which is simply the difference between the category assignment made by the

model and the specified “true” category. A variant of the backpropagation of error learning

algorithm (Rumelhart et al., 1986b) is used to communicate this error signal to an early

stage of stimulus encoding, and this backpropagated error signal is used to adjust AL-

COVE’s dimensional attention weights. Like the GCM, ALCOVE provides good fits to

human performance data on learned categories. It can explain the same phenomena as the

GCM, and also many others. It explains differences in learning speed between different

category structures, apparent base-rate neglect, and the pattern of ”three-stage-learning”

displayed by humans. Critically, unlike the GCM, ALCOVE provides a detailed account

of how dimensional attention is shaped by experience.

ALCOVE has been proposed as a model ofpsychological processes, with virtually

no aspiration to explain the neural basis of human category learning. Despite this fact,

the combination of the empirical successes of ALCOVE and itsconnectionist formaliza-

tion make the model a tempting candidate for a coarse characterization of associated brain

mechanisms. Perhaps ALCOVE can be refined, with each of its proposed psychological
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mechanisms mapped onto a corresponding detailed account ofthe underlying neural ma-

chinery. One feature of ALCOVE that stands in the way of such atheoretical reduction

is its use of the backpropagation of error algorithm in orderto learn dimensional attention

weights. This powerful learning algorithm has long been criticized for its lack of biolog-

ical plausibility (Crick, 1989), suggesting that the braincannot be adapting dimensional

attention based on such a gradient-based technique (c.f., O’Reilly, 1996).

As a first step toward a biological model of category learning, I replaced the backprop-

based dimensional attention mechanism used by ALCOVE with areinforcement learning

mechanism intended to reflect the role of the brain’s dopamine (DA) system in learning.

This role for dopamine has been formalized by other researchers in terms of an algorithm

calledtemporal difference (TD) learning (Sutton, 1988; Montague et al., 1996). Versions

of ALCOVE which adapt dimensional attention weights using the biologically supported

TD learning method, instead of the more computationally powerful but biologically im-

plausible backpropagation method, were found to fit human performance data about as

well as the original ALCOVE. Thus, this work offers a more biologically realistic model

of the adaptation of dimensional attention without sacrificing accuracy in accounting for

human categorization behavior. Also, the ability to capture human performance with the

highly stochastic TD learning method suggests that our cognitive mechanisms for adapting

dimensional attention may not be as precise as those proposed by ALCOVE.
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CHAPTER II

BACKGROUND

Category Learning Paradigm

In standard category learning tasks, the participant begins by simply observing a stim-

ulus and making a guess as to which category the stimulus belongs. Following this guess,

the participant is provided with some form of feedback that indicates the actual category

for the stimulus presented. The presentation of a stimulus,the participant response, and

the presentation of feedback all together make up a trial. The participant then goes through

several hundred to several thousand trials attempting to maximize the number of correct

responses. This portion of the task is known as the training phase. After training is com-

plete, several trials are done where the feedback portion ofthe trial is withheld. This is

known as the transfer phase of the task. The participant responses are recorded during the

transfer phase (also often called the testing phase.) Thesetransfer phase responses are then

analyzed to discern the probability of each stimulus being classified under each classifi-

cation. The transfer phase provides insight into how subjects are categorizing the stimuli

by providing statistical evidence for certain categorization strategies that subjects might be

using.

The stimuli used in current category learning studies are often composed of features that

vary across constituent stimulus dimensions. For instance, a set of stimuli might vary across

the dimension of color where individual features along thisdimension might be white, grey,

or black. This characterization of a stimulus is in contrastto a more featural view, where

the individual features of white, grey, and black are seen asbeing independent or having

no inherent relationship to each other psychologically. The dimensional representation has

at least an ordinal arrangement of stimulus features, allowing features to be compared in

similarity by their relative “locations” along the stimulus dimensions. An example of such
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a representation can be seen in Figure 1 where there are four different stimuli that vary

across two dimensions: size of the circle and orientation ofthe radial line. These stimuli

are then mapped onto a dimensional space where the stimuli are represented as individual

points in the space. In such a dimensional space representation scheme, individual stimulus

items are encoded as points in the space. These points are selected so that the distance be-

tween two points in thispsychological space is inversely related to the perceived similarity

between the two corresponding stimuli. This similarity-distance requirement often cannot

be met if the axes of the representation space are forced to correspond to arbitrarily chosen

dimensions, using arbitrary units along each one. For example, the size of a circle might be

represented by its diameter or by its area, and perceived similarity between sizes may map

onto only one of these measures. In order to ensure that distance in the representation space

is approximately related to perceived similarity, it is common to derive of discover the di-

mensions of this space by applying Multidimensional Scaling (MDS) techniques to explicit

measures of perceived similarity (Shepard, 1957; Shepard,1962a; Shepard, 1962b). For

example, the degree to which stimuli are confusable can be assessed using an identification

study (a category learning study where each stimulus is to beplaced in its own separate

category), and MDS can be applied to this confusability information in order to generate a

dimensional psychological space which appropriately captures similarity between stimuli.

All of the models discussed in this paper use a dimensional representation of this kind in

order to encode stimuli.

Several hypotheses about the strategies that subjects might be employing to categorize

stimuli have been proposed. At first, it was thought that subjects formed simple rules that

defined category membership. In other words, the subjects were thought to be inventing a

list of sufficient conditions (or stimulus features) that could be used to determine category

membership. If a stimulus met all of the conditions for membership to a particular category

then the subject would respond with this corresponding category label. Thus, category

boundaries were generally taken to be sharp and absolute.
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Figure 1: Four stimuli consisting of two dimensions (size and orientation) mapped to their
corresponding representation in psychological space

Rule-based representations of categories allow for the discrimination of members from

non-members, but they do not provide a way to separate “good”exemplars of a category

from borderline cases. This is in conflict with the fact that human categorization behavior

often displays a variable and graded response to different members of a category. For

example, people often respond that a recliner is a chair faster than when they make the

same categorization for a bar stool (that has a back portion). People are also less likely to

categorize the bar stool as a chair than the recliner. Finally, people report that they consider

the recliner more like a chair than the bar stool. These sortsof responses suggested to

some researchers that there is some kind ofprototype stimulus or an “average” of stimuli,

that embodies knowledge of a category (Rosch and Mervis, 1975). To categorize a new

stimulus, it is compared to the prototype, with similarity driving responding.

Even though the prototype view of categorization accounts for the graded nature of

many categories, it does not account for stimulus frequencyeffects. If the frequency of

seeing the various stimuli is not the same for all stimuli in the study, then performance

will generally be better for high frequency items, even if these are fairly dissimilar to the

category prototype. In general, subjects tend to be sensitive to the particular distribution

of observed stimuli and not only to the mean (i.e., prototype) of this distribution. This has
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led researchers to postulate that many stimuli are retainedin memory throughout training

and used for categorization (Medin and Schaffer, 1978). Thus, instead of a prototype, a

number of individual exemplars is compared to the current stimulus to ascertain category

membership. Since certain exemplars are seen more frequently, they tend to be associated

with category membership more than stimuli that are seen less frequently. Thus, exemplar-

based models of categorization can account for this effect where simple prototype models

fail.

The exemplar theory of categorization now dominates the category learning paradigm,

and many mathematical or computational models of categorization have been developed

based on this theory. Two of the most prevalent and successful models are examined in

detail later in this paper, the Generalized Context Model (Nosofsky, 1984) and the Attention

Learning Covering Map (Kruschke, 1992). However, hybrid models of categorization have

been developed recently that are influencing current theories of category learning as well.

Some of these models attempt to combine the exemplar-based and rule-based strategies into

a cohesive framework. For example, ATRIUM (Erickson and Kruschke, 1998) consists

of two interacting systems: one that accomplishes rule-based learning and another that

accomplishes exemplar-based learning. RULEX (Nosofsky etal., 1994) is a model of rule-

based learning that incorporates the learning of exceptions, which are particular stimuli

that seem to fit the rule but belong in some other category. Even more interesting behaviors

result when subjects are actually provided with a categorization rule before training. This

is known as instructed category learning. Exemplar information actually seems to interfere

with subjects’ abilities to properly use the given rule, andthese interference effects can be

explained using a hybrid model incorporating rule representations and exemplar similarity

information (Noelle and Cottrell, 2000).

Of particular interest here is the notion of selective dimensional attention in category

learning theory. Dimensional attention is the ability of humans to selectively emphasize

or deemphasize dimensions to aid categorization. For some tasks, some dimensions might
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be of no relevance when categorizing the stimuli. Reducing attention to these dimensions

would improve performance. This makes sense intuitively because people seem to have

limited attentional resources. If attentional resources are allocated more appropriately, then

it will take less time and effort to solve a task. Conversely,attending to more relevant

dimensions will improve categorization performance. Humans learn to do just that when

categorizing stimuli. Even though exemplar models of category learning can explain human

performance well, they fail to do so without incorporating some mechanism for selective

dimensional attention (Shepard et al., 1961).

Generalized Context Model

The Generalized Context Model (GCM) (Nosofsky, 1984) is a mathematical, exemplar-

based model of categorization. It was developed to account for human performance in cat-

egory learning based on the Context Theory of Classification(Medin and Schaffer, 1978),

a previous exemplar model of categorization. The GCM extends Context Theory in two

ways: by incorporating a choice model for stimulus identification (Luce, 1963) and by

incorporating a mechanism for selective dimensional attention. The GCM assumes that

perceived similarity between stimuli is best represented in terms of the distance between

stimulus representations in a multidimensional psychological space, as described earlier.

However, in the GCM, as two stimuli become more distant in psychological space, their

measure of similarity exponentially decreases (Shepard, 1987). The choice rule is applied

to the calculated stimulus similarity ratings to generate response probabilities which are fit

to the human response probabilities from identification andcategory learning studies.

The exponential similarity measure and choice rule incorporated by the GCM allows

the model to fit human data from stimulus identification studies well. In these studies, all

stimuli are classified as belonging to their own individual categories. All other aspects of

the task are the same as in typical category learning. Thus, the objective of identification

tasks is to identify the stimuli individually. However, stimuli close together in psychologi-

cal similarity space tend to be easily confused. This is evident in the human performance
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Size Size

OrientationOrientation

Figure 2: Stimuli of the two categories (filled or blank) havelower between-category simi-
larity and greater within-category similarity as a result of shrinking the horizontal axis and
stretching the vertical axis.

data from the transfer phases of these tasks, where the response probabilities tell us some-

thing about how often close stimuli are mistaken for each other. Empirically, the response

probabilities show that similarity does indeed decrease exponentially with increasing psy-

chological distance. Also, the data from such studies can beused to discern the actual

positions of the stimuli in the psychological space using MDS techniques, as described

earlier. The MDS values are later provided to the GCM when fitting the model to response

probabilities from the transfer phases of category learning studies.

However, the exponential similarity measure by itself is not enough to account for hu-

man category learning data. Because people learn to pay attention to more relevant dimen-

sions and ignore irrelevant ones, the psychological space seems to change during these stud-

ies. The GCM formally models this by incorporating scalar dimensional attention weight

parameters, one for each stimulus dimension. These weightseffectively “shrink” the psy-

chological space along irrelevant dimensions and “stretch” the psychological space along

more relevant dimensions. This makes stimuli seem highly similar along irrelevant dimen-

sions so that no distinctions can be made using that dimension, and the stimuli become

more dissimilar along relevant ones, making stimuli along these dimensions easier to dis-

criminate. Figure 2 shows how these dimensional attention effects can aid discrimination.
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Due to the incorporation of this dimensional attention mechanism, the GCM does an

excellent job of fitting human response probabilities from category learning studies. The

dimensional attention weights do indeed morph the originalpsychological space in the cor-

rect manner to account for the human data. However, these dimensional attention weights

are free parameters in the GCM. So the model provides no indication of how people might

be learning to morph the psychological space for better categorization performance. To bet-

ter understand how people might be learning to do this, othermodels have been proposed

that model the training phase of category learning studies.

Connectionist Modeling

A common approach to modeling various psychological and neurobiological phenom-

ena is the connectionist framework. In this framework, a setof simple processing elements

calledunits are arranged in groups calledlayers. Units are connected to other units via

connections. Often all of the units in one layer connect to all of the units in another layer

for computational simplicity. This is called a fullprojection of connections and information

flows across these connections in one direction. Each connection also has a scalarweight

value associated with it. Each unit computes anactivation value that is some function of

the activation values of the units connected to it, modulated by the weight of the connection

between the units. This function is referred to as the unit’sactivation function.

A connectionist network consists of multiple layers of units connected by projections of

connection weights. One layer of units is typically called an input layer because it does not

receive a projection from any other layer. Therefore, the activations of the these units are

fixed to some set of values, known as aninput pattern, to begin processing. Activations are

computed in each successive layer until reaching theoutput layer which has no projections

to other layers. This layer then contains the network outputfor the input pattern that was

provided to the input layer. If there are no cycles in processing from the input to the

output layers, then the network is called afeed-forward network. All other layers in a

feed-forward network are calledhidden layers. Variouslearning algorithms exist for these
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connectionist models that adapt the connection weights over time, resulting in improved

model performance.

The connectionist framework is interesting because it can roughly approximate the

processing done by the brain, if it is carefully designed to do so. However, connection-

ist models are not necessarily biologically realistic and may include extra computational

mechanisms to account for various psychological phenomena. These additions might play

an important scientific role if the actual underlying neuralmechanisms are not well under-

stood.

ALCOVE Architecture

The ALCOVE (Kruschke, 1992) model of category learning is a feed-forward connec-

tionist model based on the GCM that involves three layers of processing units as shown in

Figure 3. The input layer consists of a set of units that each correspond to a single dimen-

sion in the stimulus psychological space. MDS representations of the stimuli are provided

as input patterns to this layer. Each input unit has its own dimensional attention weight,�.

These weights are non-negative scalar values that modulatethe amount of attention paid to

the corresponding stimulus dimension in the same manner as the GCM. Higher� values

result in more attention being paid to the corresponding stimulus dimension by increasing

the separation between stimuli along that dimension, making discrimination easier along

that dimension. The opposite effect can be achieved with lower� values, which reduce the

separation between stimuli along the dimension, making discrimination of stimuli more

difficult along the dimension.

The hidden layer in ALCOVE contains a set of units that are arranged in psychological

space, one for each trainingexemplar. Each of these exemplar units has a preferred level

on each stimulus dimension. The activation value of each hidden unit is determined by the
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Figure 3: The ALCOVE Architecture

following equation which is also the similarity computation performed by the GCM:
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whereahid
j

is the activation of hidden unitj,  is the specificity of the hidden unit,�
i

is

the attention weight for input uniti, h
ji

is the preferred stimulus level of the hidden unitj

along stimulus dimensioni, ain
i

is the activation value of dimensioni, r is the psychological

distance metric, andq is the similarity gradient. Hidden unit activity is at at a maximum

when the inputs match the preferred stimulus input of the unit (i.e.,ain
i

matchesh
ji

). This

activation fades exponentially as the stimulus becomes more distant from the preferred

exemplar in psychological space. The rate at which this fading occurs is controlled by

the specificity parameter. A large value causes activation to drop off more quickly as

stimuli become more distant from the preferred exemplar. Ther andq parameters define the

distance metric used to examine similarity between the preferred stimulus and the current

stimulus being presented to the network. Withq = 1 andr = 2, the common Euclidean

distance metric is used. However, sometimes it is more appropriate to use a city-block

distance metric:q = r = 1. It has been shown that the city-block metric creates a better
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fit to human data on categorization tasks involving stimuli with separable dimensions than

the Euclidean metric which produces better fits for integralstimuli (Nosofsky, 1987). The

differences between integral and separable stimuli will bediscussed later.

Finally the output layer contains a set of units receiving activation from the hidden

layer units viaassociation weights. Each output unit corresponds to a category to which an

input stimulus might be assigned. These units are standard linear units with their activation

computed by the following equation:
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whereaout
k

is the activation value of output unitk, w
kj

is the value of the association weight

from unit j to unitk, andahid
j

is the activation value of hidden unitj.

The activations of the output units are mapped onto responseprobabilities using an

exponential Luce choice rule:
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whereP (K) is the probability of responding that this stimulus belongsin categoryK, aout
k

is the activation value of output unitk, and� is the gain term (this term is a free parameter

that is used to fit ALCOVE to human data.) These response probabilities may be used to

compare network responses with human performance data.

After the presentation of each stimulus and the consequent outputs are produced, the

output unit corresponding to the correct response is presented with a target activation level

of +1, and other units are presented with targets of�1. An error signal consisting of the

difference betweenaout
k

and these targets is used to adjust weight values (though output

units that “overshoot” their target values are assigned zero error).

There have been a number of connectionist algorithms that are capable of adjusting
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the weights of the network based on gradient-descent in network error. A common bio-

logically plausible learning algorithm of this kind is thedelta rule which has been used

in other connectionist models of category learning (Gluck and Bower, 1988; Gluck et al.,

1989). This algorithm was generalized to be used in multilayer networks and is therefore

known as thegeneralized delta rule (Rumelhart et al., 1986a; Rumelhart et al., 1986b).

Both of these learning mechanisms are computationally powerful ways to learn connection

weights. They adjust weights incrementally by a small amount (�w) based on network

error. However, the delta rule can only adjust connections running into the output layer.

Therefore, the generalized delta rule must be used to adjustconnection weights deeper in

the network. The association weights are adjusted using this error signal directly (i.e., using

the delta rule), but the selective attention weights are adjusted based on a backpropagated

error signal. The resulting weight update equations are:
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where�w

out

kj

is the adjustment value for the association weight from hidden unitj to output

unit k, ��

i

is the adjustment value for the attention weight for input unit i, �
w

and�
�

are

the learning rate parameters for the association weights and attention weights, respectively,

t

k

is the target value for output unitk, and all other symbols have already been defined.

The learning rate parameters are part of the standard delta rule and generalized delta rule

and they are often kept very small ([0; 1℄) to encourage gradual weight changes. The only

constraint in applying these update equations is that ALCOVE restricts dimension attention

weights to be non-negative because negative attention weights do not represent anything of

psychological value.

The generalized delta rule (also known as the backpropagation of error learning al-

gorithm or, more simply, backprop) (Rumelhart et al., 1986a; Rumelhart et al., 1986b)
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changes weights in the network by adjusting values in a slow,incremental fashion to mini-

mize a formal network error function which is a function of the network’s output. An error

function calledsum-squared error is used by ALCOVE, just as it is in many other con-

nectionist architectures. The more the network’s responses differ from the target response

to the provided input stimulus, the greater the error. An error value of zero represents a

perfectly correct response. The network error is “backpropagated” from the output layer

by passing error information back across connections to previous layers. The dimensional

attention weight update equation in ALCOVE incorporates this distant error information to

properly learn these weights.

ALCOVE’s combines error-driven learning and the GCM’s mathematical formalisms

into a powerful connectionist architecture, allowing it tofit human performance during cat-

egory learning quite well. It has been used to explain selective dimensional attention learn-

ing, how category structure effects learning speed, apparent base-rate neglect phenomena,

and “three-stage learning” of rules and exceptions (Kruschke, 1992). The hidden layer ar-

chitecture of ALCOVE also allows it to overcome the effects of catastrophic interference

that are often observed in other connectionist models of category learning (McCloskey and

Cohen, 1989).

Like many other connectionist architectures, ALCOVE makesno assumptions about

the underlying neural mechanisms that are responsible for category learning in the brain.

It is, instead, simply a psychological model of categorization performance and category

learning. However, its success in describing category learning phenomena in a connection-

ist framework make it a promising approach to creating a biologically plausible model of

category learning in the brain. It might be possible to make incremental changes to this

architecture by replacing biologically implausible mechanisms with more feasible neural

mechanisms to gain some insights into how the brain might be performing categorization.

The goal of this work is to begin the process of making ALCOVE biologically plau-

sible through a change in ALCOVE’s mechanism for learning dimensional attention. The
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ALCOVE model uses the backpropagation of error algorithm toadjust dimensional atten-

tion weights, but this algorithm has been criticized for itsbiological implausibility (Crick,

1989; O’Reilly, 1996). In brief, the backpropagation of error learning algorithm requires

error signals to be sent backwards along the same weighted connections that control the

flow of activity through the network. To the degree that weighted connections are seen as

abstractions of the information processing that takes place at neural synapses in the brain,

such a backward communication of error is impossible. In thebrain, such information can-

not be propagated back across synaptic connections. Therefore, if the basic structure of

ALCOVE is correct, some other mechanism must be used by the brain to update dimen-

sional attention. Thus, some other biologically plausiblemechanism of learning needs to

be found that properly learns the dimensional attention weights in ALCOVE.

Temporal Difference Learning

Recent studies indicate that the firing rates of dopamine neurons in the basal ganglia

encode a signal aboutchanges in expected future reward (Shultz et al., 1997) that is globally

available throughout much of the brain. Schultz et.al. (1997) reported single cell recordings

from a population of dopamine neurons in the substantia nigra of a monkey, taken during

a simple classical conditioning study. The results are shown in Figure 4. The top graph

represents the situation where a monkey is given a reward (a small sip of juice). Notice

that the dopamine neurons fire above their baseline firing rate just after this reward is given.

Therefore, we can easily see that these neurons are influenced by rewards. If a conditioning

stimulus (a tone or sound) is presented to the monkey shortlybefore giving the reward,

and this is repeated for several trials, these neurons then begin to fire for the conditioned

stimulus as shown in the graph on the left. However, they do not fire for the actual reward.

Now, it would appear that these neurons have learned to predict the upcoming reward. In

other words, the monkey has learned to expect a reward after the conditioned stimulus.

Interestingly, if the conditioned stimulus is presented, but then the reward is withheld as

in the graph on the right, the cells actually suppress below their baseline firing rates. This
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Figure 4: Firing rates of a population of dopamine neurons inthe midbrain during classical
conditioning (Adapted from ”A Neural Substrate of Prediction and Reward” by W. Schultz,
P. Dayan, & P. R. Montague, 1997,Science, 275, pp.1593–1599.)

indicates that the dopamine neurons are encoding for changes in expected future reward.

They fire more strongly when the animal perceives a situationwhere it expects to soon

be rewarded. However, they also fire less strongly when no rewards are provided at a

time that they are expected. This is interesting because a measure of change in expected

reward is the key variable of a reinforcement learning method calledtemporal difference

(TD) learning (Sutton, 1988). This realization has led a number of researchers to develop

models of the dopamine system using TD learning (Barto, 1994; Montague et al., 1996).

In the TD framework, a continuous reward value (r) is delivered on each time step

(t) with positive reward being desirable. A neural system called theadaptive critic learns

to predict expected future reward (V ) given features of the current situation, commonly

referred to as the currentstate. The typical architecture of the adaptive critic is shown in

Figure 5 wherea
i

is the activation value of the output uniti, V is the value of the current

state,w
ij

is the connection weight for the connection from unitj to unit i, and features
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Figure 5: A typical adaptive critic architecture

associated with the current state are encoded across all of the input units (allj). Since the

idea is to learn to predict how rewarding a state is, ideally we want the following to be true:

V (t) = r(t) + r(t+ 1) + r(t+ 2) + : : :+ r(t+ n) (6)

This would make the our predictions of future rewardsV at timet be the sum of all reward

we will receive as a result of being in our current state. However, we might look at rewards

that are received soon as being more important than rewards received more distantly in the

future. (This is not always the case, but this method has proved reliable for learning (Sutton,

1988).) We can discount future rewards by multiplying subsequent future rewards by a

factor which is between0 and1. Thus, the prediction of reward changes to the following:

V (t) = 

0

r(t) + 

1

r(t+ 1) + 

2

r(t+ 2) + : : :+ 

n

r(t+ n) (7)

However, we don’t know these future reward values and, therefore, cannot calculateV .

However, it is not necessary to have all of these reward values to begin making predictions.

One can instead use the prediction of reward for the next state, where one ends up,V (t+1),

in order to approximate our prediction of future rewards forthe current stateV (t). Here is
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how this occurs: Since,

V (t) = 

0

r(t) + 

1

r(t+ 1) + 

2

r(t+ 2) + : : :+ 

n

r(t+ n) (8)

and

V (t + 1) = 

0

r(t+ 1) + 

1

r(t+ 2) + : : :+ 

n�1

r(t+ n) (9)

then it follows that:

V (t) = 

0

r(t) + 

1

V (t+ 1) (10)

This means that if our predictions ofV are reliable, then we only need the reward received

at the current time step and our prediction for the next time step to accurately predict ex-

pected future rewards. It is up to the adaptive critic to approximate this function,V (t), in

order to accurately predict changes in expected future reward. The critic needs to incremen-

tally adjust its predictions based on reward information from each time step in order learn

this approximation. In order to accomplish this, the criticcalculates a change in expected

future rewards:

Æ = (r(t) + V (t+ 1))� V (t) (11)

Note that this difference is derived from the above equations governing expected future

rewards. In particular,Æ is zero when the appropriate relationship holds betweenV (t) and

V (t+ 1). Weights in the adaptive-critic network that participatedin the computation ofV

are then adjusted in the following manner:

�w

ij

= �

td

Æ a

i

f

0

(net

i

) (12)

where�w

ij

is the amount to change the weight leading from unitj to unit i, �
td

is the

learning rate, andf 0

(net

i

) is the derivative of the activation function of uniti evaluated

at the net input for uniti. Also note thatV = a

i

wherea
i

is the activation value of unit

i. The Æ term is called thetemporal difference (TD) error. This global error value can
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be used to drive learning in the adaptive critic, as shown in the weight update equation

above, improving its ability to predict expected future reward. This error term can also

be used to drive learning in other neural systems that selectactions, driving these systems

to choose actions that regularly lead to reward. This is how learning is accomplished in

theactor-critic framework which has been used to explain motor sequence learning in the

striatum as well as other forms of learning (Barto et al., 1990; Barto, 1994; O’Reilly et al.,

2002). The adaptive critic can be seen as computing what is called thevalue function in

the reinforcement learning literature while the actor computes what is known as thepolicy

function. While the value function is an estimate of the total expected future reward for

any state encountered, the policy function determines an action that proceeds to the next

state. However, the adaptive critic can be used to choose actions without the aid of an actor

network by predicting rewards for all future states that result from taking every action that

is available to the system and choosing to take the action that leads to the most rewarding

state (i.e. the state that has the highest estimate of total future reward.)

TD has been used extensively to learn sequences of overt actions, which are commonly

motor skills. However, in some models, TD has been used to explain the coordination

of covert cognitive activities like updating working memory contents (Braver and Cohen,

2000; O’Reilly et al., 2002). These models are good examplesof how TD can control

covert cognitive activities through reinforcement learning. The allocation of attention can

also be thought of as a covert cognitive function. Therefore, I propose that this form of

reinforcement learning may also be used to learn dimensional attention weights that lead

to correct categorization responses and, thus, reward.
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CHAPTER III

METHODS

Conjunctive Coding

The attention weights in ALCOVE take on continuous values torepresent varying levels

of attention for the various stimulus dimensions. However,most applications of temporal

difference learning focus on choosing from among a set of discrete actions, while there

is no clear understanding of how to apply these methods to domains where continuous

output is needed (Sutton, 2001). Therefore, some modification to standard TD learning

is needed to apply these techniques to the problem of learning dimensional attention. I

devised two novel connectionist architectures to accomplish this. I chose to encode atten-

tional weight vectors (with one�
i

weight per dimension) across a single layer of standard

connectionist processing units, called theattention map layer. Each unit in this layer pos-

sesses a preferred attentional weight vector, and the activation of a unit encourages the use

of that unit’s preferred dimensional attention weights. The activation level of each unit is

mainly determined by its individual bias weight. These biasweights are adapted using the

TD learning method to optimize reward. This very simple, single-layer network forms the

backbone of selective attention learning in my models.

At the start of each trial, each of the attention map units computes its activation value

based on its bias weight. The attention map units then compete in such a way so as to

effectively select a vector of attention weight values to beused by ALCOVE. (This compe-

tition varies across models and is described below.) With the new set of attention weights

in place, ALCOVE processes the current trial in the usual fashion and produces a catego-

rization judgment. In response to feedback, ALCOVE’s association weights are adjusted

in the usual manner using the delta rule. However, the adjustment of the dimensional atten-

tion weights is handled differently. If ALCOVE confidently chooses the correct category,
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it is rewarded. Otherwise, it is not. The TD error,Æ, computed as a function of this reward

signal is used to modify the bias weights of all active attention map units. Over multiple tri-

als, the bias weights are strengthened for attention map units whose associated dimensional

attention weights regularly lead to reward.

Two different architectures for the attention map were investigated. The first of these

employedconjunctive coding, resulting in alocalist representation of dimensional atten-

tion. In this scheme, the preferred dimensional attention weight vectors of the attention

map units were distributed evenly throughout the attentionweight vector space. Therefore,

each unit corresponded to a position in weight vector space and the attention map layer

consisted of a grid of units that spanned this space. On each trial, a simple winner-take-all

competition determined the single attention map unit whosepreferred weight vector would

specify dimensional attention for that trial. Learning occurred only for the winning unit,

where the weight update equation for its bias weight was as follows:

�w

i

= �

r

(r � a

i

) f

0

(net

i

) (13)

where�w

i

is the weight adjustment for the bias weight for attention map unit i, �
r

is

the attention map learning rate parameter,r is the reward for the current trial,a
i

is the

activation value of the winning attention map unit (i), andf 0

(net

i

) is the derivative of the

activation function (the standard logistic sigmoid). Thisis the standard TD weight update

equation under the condition ofabsorbing rewards, where we do not predict reward past

the end of the current trial. In this case,a

i

acts as our reward prediction (V (t)), and we

do not predict beyond this trial, soV (t + 1) = 0, soÆ = r � a

i

. A reward value (r) of

+1 was delivered to the network on trials where ALCOVE selectedthe correct category

label with a confident response. In other words, this reward was delivered when all output

unit activations were within0:5 of their respective targets. Otherwise, a reward of0 was

delivered.
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Tile Coding

Our second attention map architecture employedtile coding, resulting in adistributed

representation of dimensional attention. Here the the units in the attention map layer were

partitioned intotilings, where each disjoint tiling contained a set of units with preferred

dimensional attention weight vectors that uniformly spanned the entire attention weight

space. However, the preferred dimensional attention vectors were not identical because

each tiling was “offset” from the others as shown in Figure 6.In order to precisely rep-

resent a position in attention weight space, exactly one unit from each tiling needs to be

active and thetiles surrounding the unit positions from each tiling need to overlap. This

kind of distributed representation was originally used in the Cerebellar Model Articulation

Controller (CMAC) (Albus, 1975), and its use in other TD learning systems has been found

to result in improved generalization (Sutton, 1996). Just as in the conjunctive coding ar-

chitecture, each attention map unit is activated by a bias weight and a competition between

units ensues. However, in the tile coding scheme the most active unit restricts activity in

other tilings. First, the most active unit across all of the tilings in identified. Then, the

most active unit in each tiling whose corresponding tile overlaps with the first winning

unit’s tile remains active while the activity of the other units in the tiling are suppressed.

This restriction is applied recursively to all tilings, allowing only one active unit per tiling,

whose tile overlaps with all other active tiles. The attention weight vector corresponding to

the center of this overlapping region is used by ALCOVE to process the current stimulus.

Once feedback has been provided, reward is calculated as in the conjunctive coding case,

and TD learning is used to adjust the bias weights of all of thewinning (active) units in the

attention map layer.

In standard ALCOVE, the initial attention weights are oftenset to all be equal and sum

to 1. This effectively emphasizes all dimensions equally from the start of training. We

selected initial bias weights in the attention map layer in order to form a similar initial bias

in our models. The unit in the attention map whose preferred dimensional attention vector
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Figure 6: Tile coding of the attention map layer – A single unit is centered in each tile

matched the initial vector used in standard ALCOVE was assigned an initial bias weight

value of0:05. Bias weights assigned to to the other units in the attentionmap fell off in

a Gaussian fashion as distance from this position increased, with a lower bound of�0:05.

A small amount of uniform noise was then added to each bias weight and the resulting

weights were clipped to remain in the[�0:05; 0:05℄ range. The variance of the Gaussian

and the range of the uniform noise were free parameters of themodel.
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CHAPTER IV

RESULTS

In order to verify that these reinforcement learning mechanisms could indeed account

for the learning of dimensional attention and human performance, the models were applied

to several category learning tasks previously studied in the category learning literature. The

performance of the models was compared to standard ALCOVE and also ALCOVE without

attention learning. If the reinforcement learning mechanisms can learn dimensional atten-

tion appropriately, then the new models should closely match the performance of standard

ALCOVE. However, if the conjunctive and tile code models deviate from the performance

of standard ALCOVE, and behave in a manner similar to ALCOVE without attention learn-

ing, then we can say that the reinforcement mechanisms are not producing appropriate di-

mensional attention weights. Tasks in which standard ALCOVE and ALCOVE without

attention learning perform equally well show that dimensional attention does not play a

significant role in these tasks. Thus, any degradation in performance on these tasks for

the conjunctive and tile code models indicates that the reinforcement learning mechanisms

are actually interfering with the learning of these tasks. The following experiments show

that the new models learn useful dimensional attention weights in tasks that require dimen-

sional attention to match human performance, and they do notinterfere with the learning

of tasks where dimensional attention does not aid performance. In summary, the models

can account for differences in learning speed as a function of category structure, the util-

ity of dimensional attention when stimulus dimensions are separable, and the performance

consistency of dimensional attention when stimulus dimensions are integral.

Dimensional Attention & Learning Difficulty

Shepard, Hovland, and Jenkins examined the effect of category structure on the rela-

tive speed with which a category structure is learned (Shepard et al., 1961). Stimuli were
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composed of three easily separable binary dimensions, for atotal of eight possible stimuli.

Six category structures where examined as shown in Figure 7.Each of the eight resulting

stimuli was assigned to one of two categories which are represented in the figure as either

a filled (black) corner or a blank (white) corner. The resulting structures were then ordered

based the relative difficulty in learning the structures. The Type I category structure re-

quires only information about the first dimension (dim 1) in order to correctly categorize

the stimuli. Thus, it is the easiest to learn. However, the Type 2 category structure requires

information about two dimensions (dim 1 and dim 2) to make a correct decision and should

be more difficult to learn. The remaining category structures require attention to all three

dimensions to make correct decisions, but certain dimensions are more informative in some

cases (i.e., most of the stimuli for Type 4 can be classified based solely on information about

the third dimension (dim 3), but there are two “exceptions” that require attention to either

of the other two dimensions for their classification). Therefore, the remaining category

structures are ordered based on their relative dimensionalusage across all dimensions.

The subjects in this study were trained on a stimulus set consisting of three separable,

binary dimensions: shape (triangle or square), size (largeor small), and color (filled or

blank). The number of trials taken to reach categorization proficiency was recorded in each

task. The subjects learned the Type I category structure thefastest, the Type II structure

next, and so on for all six structures. However, there was nota significant difference in

the learning difficulty of Types III, IV, and V, which only differ slightly (i.e. their rel-

ative dimensional usage across all dimensions is the same, but their stimuli assignments

are slightly different). Shepard et.al. argued that category learning models based on rein-

forcement learning could not account for this learning order without incorporating some

mechanism for selective dimensional attention. Therefore, this study provides a frame-

work for testing the biologically-plausible dimensional attention learning mechanisms of

the conjunctive code and tile code models against ALCOVE’s backpropagation mechanism

for learning dimensional attention.
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Figure 7: Category structures used by Shepard et.al., (1961). (From “Learning and Mem-
orization of Classifications” by R. N. Shepard, C. L. Hovland, & H. M. Jenkins, 1961,
Psychological Monographs, 75, 13, Whole No. 517, p. 4. In the public domain.)
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Table 1: Parameter values for attention learning demonstration using the Six Type
data (Shepard et al., 1961).

Parameter Values
Parameter ALCOVE - Standard ALCOVE - No� Learning
Specificity 6.5 6.5
Association Weight Learning Rate 0.03 0.03
Attention Weight Learning Rate 0.0033 0.0
Luce Choice Gain 2.0 2.0

ALCOVE is clearly able to account for this learning order through its attention learning

mechanism, but not without it. Figure 8 shows how ALCOVE performs on these category

structures involving binary stimuli when attention learning is either enabled or disabled.

Standard ALCOVE is able to account for the proper learning order using its attention learn-

ing mechanism. Also, Shepard et.al. could not find a significant difference in the relative

learning difficulty for Types III, IV, and V, and ALCOVE also displays this behavior, though

the type V difference is slightly more pronounced. (A difference was found in the empirical

study, but it was not statistically significant.) However, without its dimensional attention

learning mechanism, ALCOVE fails to learn these tasks in theproper order. (In particular,

the Type II task is learned much too slowly.) Indeed, no matter what other parameter val-

ues are chosen, if the attention learning mechanism is disabled, the learning order remains

improper. The learning curves in Figure 8 were generated using online learning and all

eight stimuli were seen in random order on each epoch (permuted) with parameter values

as shown in Table 1.1

The challenge for the conjunctive code and tile code models is to account for this learn-

ing difficulty as well as standard ALCOVE. Therefore, the models were applied to the Six

1This is a replication of a study from Kruschke (1992) except Iused online learning instead of batch
learning. In batch learning, weight updates that result from the presentation of all eight stimuli are not
applied until all of the stimuli have been presented. Anepoch consists of one complete pass through all of
the training patterns (stimuli). Therefore, in batch learning, weights are updated once per epoch. However,
in the online learning scheme, weights are updated after each stimulus presentation. ALCOVE typically uses
batch learning.
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Figure 8: Performance on Six Type category structures for ALCOVE with attention learn-
ing either enabled (left) or disabled (right).

Type categories for comparison. Since the stimuli were composed of three dimensions,

the attention weight space was three-dimensional. The conjunctive coding model used a

15 � 15 � 15 unit topology for its attention map layer (3375 units total), while the tile

coding model used five tilings of9 � 9 � 9 units each (3645 units total). Note that while

these two models contained a comparable number of units in their attention map layers, the

use of distributed representations in the tile coding case both increased the precision with

which weight vectors could be specified and offers the promise of improved generalization.

The results of these simulations are shown in Figure 9 and Figure 10. Learning was done

online and all eight stimuli were seen in random order on eachepoch. All parameters were

manually selected and are shown in Table 2.

The graphs in Figure 9 show a representative individual run for both the conjunctive

code and tile code models. Both models display the desired learning traits, similar to stan-

dard ALCOVE. In particular, the Type II structure is learnedfaster than the Type III, IV, V,

and VI structures, but still slower than the Type I structure. This behavior is critical to the

validation of the conjunctive and tile coding approaches tolearning dimensional attention.
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Figure 9: Performance on Six Type category structures for conjunctive and tile coding
models – results for an individual representative run
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Figure 10: Performance on Six Type category structures for conjunctive and tile coding
models – results averaged across 20 individual runs
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Table 2: Parameter values for conjunctive code and tile codemodels using the Six Type
data (Shepard et al., 1961)

Parameter Values
Parameter Conjunctive Code Tile Code
Specificity 6.5 6.5
Association Weight Learning Rate 0.033 0.033
Reinforcement Learning Rate 0.001 0.001
Luce Choice Gain 2.0 2.0
Gaussian Variance 0.8 0.8
Uniform Noise Variance 0.008 0.01

If the models could not account for the empirical results from Shepard et.al. then we would

know for sure that they were not performing attention learning correctly. Note, however,

that there are obvious differences in the conjunctive and tile code models’ performance

compared to standard ALCOVE, even though they learn the tasks correctly. ALCOVE dis-

plays a smooth learning curve, indicative of the gradient-descent learning performed by

ALCOVE. The conjunctive code and tile code models do not display this smooth learning

phenomenon due to the stochastic nature of the winner-take-all mechanism combined with

TD learning that determines dimensional attention weightsfor the models. This result is in-

teresting because ALCOVE assumes that people update dimensional attention in a graded,

incremental fashion in order to solve category learning tasks. Since the conjunctive code

and tile code models can account for the same performance using a stochastic mechanism,

people might possibly be learning dimensional attention inthis stochastic fashion, instead.

Indeed, ALCOVE might be thought of as matching the average performance across a popu-

lation of individual subjects. This can be seen in comparingthe results in Figure 10 (where

the average learning curve from twenty individual runs of each model is shown) to the

standard ALCOVE learning curves from Figure 8. ALCOVE couldeasily be fit to human

performance data from individual subjects, but it could notshow stochastic shifts in dimen-

sional attention and learning like the conjunctive and tilecode models. However, we do not

have empirical data for individual subjects to compare withour models. Therefore, while
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we do not know how stochastic the empirical data really is, ALCOVE predicts it is smooth

while the conjunctive code and tile code models predict thismore stochastic learning. This

would be an interesting result to examine empirically.

Even though the Six Type tasks provide a good framework for testing the qualitative

performance of the conjunctive code and tile code models, they have several limitations

that need to be addressed. First, the stimuli in the tasks arebinary in each dimension (i.e.

they only take on one of two possible values for that dimension.) However, the stimuli in

category learning tasks are often continuous in each dimension. That is, they can take on

one of several possible values for each dimension. Size could range from small to medium

to large or color could range from blank (white) to grey to filled (black.) It could be the case

that the reinforcement learning mechanisms employed by themodels could fail to properly

learn dimensional attention for tasks involving continuous stimuli. Also, the empirical

data on the Six Type tasks only allows for an analysis of modellearning speed for these

structures and does not provide a framework for analyzing how well these models capture

human generalization performance. Finally, the Six Type tasks involve separable stimuli,

where a change in the value of one dimension does not affect the perception of the other

dimensions. If integral stimuli are used, where perceptionof other dimensions is affected

by a change in any single dimension, the importance of dimensional attention decreases to a

large degree. But it is important that category learning models that incorporate dimensional

attention match human performance even when integral stimuli are used – that dimensional

attention mechanisms do not hinder the ability of the modelsto fit human performance.

Again, the conjunctive code and tile code models might fail to properly learn dimensional

attention (possibly causing the models to fail to account for performance as well as standard

ALCOVE does), even though the weights are not as important inthis case.

In order to address these concerns, two more experiments were conducted to examine

the performance of the conjunctive code and tile code modelson stimuli of these kinds.

Both experiments involve continuous stimuli to address thebinary limitation of the Six
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Type tasks. Also, both experiments involve fitting the models to actual human response

probabilities at arbitrary times during training. Finally, one of the experiments uses stimuli

with separable dimensions and the other with integral dimensions.

Categorization of Separable Dimensioned Stimuli

Nosofsky conducted a category learning study involving stimuli with separable dimen-

sions and then fit the GCM to the resulting human performance data in order to show the

effectiveness of the GCM (Nosofsky, 1986). The stimuli consisted of two continuous di-

mensions: a semicircle inscribed with a radial line. The semicircles varied across four

radius lengths, and the radial lines varied across four angles for a total of sixteen possi-

ble stimuli. The four different category structures in Figure 11 were designed using these

stimuli. For each category structure, eight of the stimuli were explicitly assigned to one of

two categories. These were the stimuli used in the training phase of the study, while the

remaining eight were used to assess generalization. Subjects underwent an approximately

1,200 trial training phase on a category structure and then an a 3,500 trial transfer phase

on the same structure. (During the transfer phase in this study, feedback was provided for

stimuli that were explicitly assigned to a category.) Each category structure was learned by

the subjects in this manner. The response probabilities forall sixteen stimuli were calcu-

lated based on the results from the transfer phases for each category structure. The GCM

was then fit to these response probabilities.

In order to assess the performance of the conjunctive code and tile code models on

these category learning tasks, a slightly different strategy from that used with the Six Type

data was taken. ALCOVE with attention learning and without attention learning was fit to

the response probabilities in the transfer phase after being trained for a total of 1,200 trials

(as in Nosofsky’s study). The same was also done for the conjunctive code and tile code

models. A simple hill-climbing optimization algorithm minimizing the sum-squared error

between network generated response probabilities and the Subject 1 response probabilities

was used to fit the free parameters of the models (4 for ALCOVE as listed in Table 1, 6 for
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Figure 11: Category structures for the sixteen stimuli withseparable constituent dimen-
sions (Nosofsky, 1986)
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conjunctive code and tile code models as listed in Table 2) for each category structure. The

conjunctive code attention map layer was arranged in a15 � 15 unit topology (225 units

total), while the tile code model used 9 tilings of5� 5 units (225 units total.) The stimuli

were presented to the models using the multidimensional scaling code found by Nosofsky.

The quality of the fits are summarized in Figure 12. The standard ALCOVE model

provided the best overall fits to the data, but the conjunctive code and tile code models

performed well at matching the subject response probabilities as well. The only noticeable

difference in performance occurred using the tile code model on category structure 3. This

is a very difficult category structure to learn and the tile code model does not even perform

as well as ALCOVE without attention learning. Thus, even though the tile code model

has several computational benefits over the conjunctive code model, it does not account for

human performance as well. The dimensional attention weight values that might actually

aid the model in solving this (relatively difficult) task might be represented in a very small

area of weight space. Thus, the tile code model’s generalization method might actually be

hindering its performance because surrounding areas of weight space, which fail to produce

reward, might make the area containing the appropriate values less likely to be discovered.

This could more than likely be overcome by using more units ina tiling and fewer total

tilings. However, for category structures 1 and 2, the conjunctive code and tile code mod-

els show significant performance benefits over ALCOVE without attention learning. The

conjunctive and tile code models do almost as good a job as ALCOVE. It would be unrea-

sonable to expect them to do better since the gradient-descent learning methods employed

by standard ALCOVE are extremely powerful. Instead, the goal of these models is to per-

form almost as well as standard ALCOVE while using biologically-based reinforcement

learning mechanisms. Overall, the models seem to account for human performance and

learn adequate dimensional attention in tasks involving continuous stimuli.2

2The GCM fits are from Nosofsky (1986). I provided fits for the other four models.
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Figure 12: Fits to human performance on category structuresinvolving continuous, sepa-
rable stimuli

Categorization of Integral Dimensioned Stimuli

Nosofsky also conducted a category learning study involving stimuli with integral di-

mensions and then fit the GCM to the resulting human performance data in order to show

the effectiveness of the GCM in capturing human performanceeven when stimulus di-

mensions were not separable (Nosofsky, 1986). The stimuli consisted of twelve colored

chips from the popular Munsell chip set manufactured by the Munsell Color Company.

The colors on these chips vary along two dimensions: saturation and brightness. These

dimensions are continuous and any change in one dimension affects human perception of

the other dimensions. Twelve such chips were partitioned into six different category struc-

tures as shown in Figure 13. Some or all of the stimuli were assigned to categories for

use in the training phase and all twelve stimuli were used during the transfer phase. Each

of the category structures were studied for a fixed number of trials as shown in Table 3.
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Figure 13: Category structures for the twelve stimuli with integral constituent dimen-
sions (Nosofsky, 1987)

The responses of multiple subjects for all twelve stimuli during the transfer phase were

aggregated to produce the response probabilities fit by the GCM.

The same fitting process explained earlier was used to fit ALCOVE, the conjunctive

code, and the tile code models to the response probabilitiesfor all twelve stimuli from the

transfer phase associated with each category structure. Since the attention weight space was

two-dimensional, as in the separable stimuli study, the attention map layers were identical

to those used in the previous simulations. Also, the number of training trials done by each

model before fitting the model to the data for each category structure was equal to those

used in the human study (shown in Table 3.) Again, the stimuliwere presented to the

models using the MDS code found by Nosofsky.
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Table 3: Training trials for integral stimuli category structures
Category Structure Name Number of Training Trials

1 Criss-Cross 240
2 Saturation (A) 180
3 Diagonal 380
4 Brightness 490
5 Saturation (B) 400
6 Pink-Brown 400

The quality of the fits are summarized in Figure 14. The standard GCM model pro-

vided the best overall fits to the data, but ALCOVE, the conjunctive code, and the tile code

models performed well at matching the subject response probabilities as well. However, all

other models showed significantly poorer performance than the GCM for category structure

3. This structure has roughly the same layout as the category3 structure from the separable

stimuli study so, again, problem difficulty may be to blame. In the GCM, the attention

weights are free parameters discovered by an extensive fitting process and it may just be

that this problem requires a strange combination of attention weight parameters that the

other models find difficult to learn. Again, the tile code model suffers more than the others

which only strengthens this hypothesis. The standard ALCOVE fit for category structure 2

is excellent. The conjunctive code and tile code models had to learn this task rather quickly

and so the rewards might not have been strong long enough to push the dimensional atten-

tion weights into the same area of attention weight space as the gradient-descent learning of

ALCOVE. Even with the structure 3 learning limitation and slightly worse fits on structure

2, the conjunctive code and tile code models fit the data roughly as well as ALCOVE and

do not fail to do so when integral stimuli are used.3

3The GCM fits are from Nosofsky (1987). I provided fits for the other four models.
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Figure 14: Fits to human performance on category structuresinvolving continuous, sepa-
rable stimuli
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CHAPTER V

DISCUSSION & FUTURE WORK

The results show that established computational models of the brain’s dopamine system

can provide an adequate replacement for the biologically implausible backpropagation of

error method for adapting dimensional attention during category learning. The two new

models actually fit the human performance data quite well. Even though ALCOVE gener-

ally performed the best of all of the models examined, the newmodels were able to learn

useful dimensional attention weights from their less-informative global reinforcement sig-

nal. The TD error signal is less-informative in that is does not supply the network with in-

formation about the direction in which the attention weightparameters should be changed.

The backpropagation of error algorithm provides this dimension-specific information when

updating attention weights (for example, the attention weight for orientation needs to be in-

creased and the attention weight for size needs to be decreased) through adapting weights

based on gradient-descent in network error. However, the TDlearning algorithm has to

use the underlying architecture to discern how to change attention weight values. Thus, it

strikes a balance between exploring new attention weight values and exploiting the atten-

tion weight values it has learned for producing rewarding responses.

In contrast to ALCOVE, the mechanisms described here are stochastic in nature. That

is, attention weights can sometimes change drastically in an attempt to explore better at-

tention weight combinations while other times they may stayclose to a particular area of

weight space. This stochastic behavior comes from the initialization methods described

above, where uniform random noise is injected into the bias weights of the attention learn-

ing networks. If a particular combination of values does notget rewarded over several tri-

als, the biases of the units encoding that combination may become low enough that another

unit on the other side of the space could become more highly active and begin to win the
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winner-take-all competitions between attention map units. Thus, the attention learning pro-

duced by these TD learning mechanisms does not lend itself toslow, incremental changes

in dimensional attention. Instead, these models are extremely dynamic, but still capable of

learning useful dimensional attention representations. Other models of categorization like

RULEX (Nosofsky et al., 1994) as well as other studies in category learning (Rehder and

Hoffman, 2003) see the slow, incremental changes in dimensional attention as an artifact

of averaging data across multiple subjects. The models presented here show how dimen-

sional attention that is highly stochastic can be leveragedproperly for good categorization

performance. If it is determined that the individual learners display rapid, stochastic shifts

in dimensional attention, the conjunctive code and tile code models may provide a better

fit to individual performance than the necessarily smooth-shifting ALCOVE.

In all of the proposed TD models, individual attention map units encodeconjunctions

of attention weights – one weight value for each dimension. This encoding strategy was

adopted for a good reason. It turns out that if attention weight space is not represented in

this conjunctive fashion, then good attention weight values can often get unduly penalized.

This occurs because dimensional attention weights do not operate independently from one

another. Raising a single dimensional attention weight effectively lowers the amount of

attention paid to all other dimensions as well as increasingattention for that dimension.

A disjunctive coding of attention weight space, where the attention weight parameters are

selected independently, does not capture this effect and leads to a general failure to learn

when combined with TD learning. The conjunctive code overcomes this problem by not

penalizing the network for producing bad attention weight values, but by penalizing bad

conjunctions of attention weight values. The opposite consequence of rewarding the net-

work for choosing poor attention weight values occurs for disjunctive encodings, as well,

and is overcome by the conjunctive code approach. These advantages are achieved with the

tile code model which uses a distributed, conjunctive encoding of attention weight values,

as well as the conjunctive code model which uses a localist, conjunctive encoding.
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Disjunctive representations make TD learning extremely unstable and some form of

conjunctive coding seems to be necessary for proper learning. This is true in other rein-

forcement learning schemes as well (Sutton, 1996). However, the conjunctive code model

has one major drawback common to all localist conjunctive representations. The number

of attention map units required to adequately cover the attention weight space grows expo-

nentially in the number of stimulus dimensions. This limitsthe scalability of conjunctive

coding approaches in connectionist modeling. Also, conjunctive coding results in a localist

representation of attention weight space. Therefore, conjunctive coding lacks the ability to

generalize without some additional mechanisms to aid in this process. Therefore, the tile

code attention map architecture was examined, since it doesnot suffer as much in terms of

scalability and also has the ability to generalize across conjunctions of dimensional atten-

tion weights. Even though the number of units needed to fullycover the attention weight

space still increases exponentially with stimulus dimensionality, the tile code model uses

significantly fewer units to achieve the same level of space discretization. Also, the tiles

in the tile code model have overlapping receptive fields which provide for generalization

between similar attention weight vectors. Thus, the tile code model has several clear com-

putational advantages over the conjunctive code model. However, the conjunctive code

model might still be the best representation for learning dimensional attention even with

its apparent weaknesses. Other forms of distributed codes could be explored in the future.

The use ofCPCA Hebbian learning combined withk-winners-take-all inhibition has been

proposed as a biologically plausible method of learning sparse distributed representations

in an unsupervised or self-organizing fashion (O’Reilly and Munakata, 2000), where no

target signal is needed to learn these representations. Other forms of unsupervised learning

that use winner-take-all inhibition like the models explored here could also be investigated,

like competitive learning (Rumelhart and Zipser, 1986) or Kohonen learning (Kohonen,

1984).

The use of conjunctive coding to learn the continuous attention weight parameters in
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ALCOVE has other implications in the general reinforcementlearning domain. There is

no clear understanding of how to apply reinforcement learning methods to learning contin-

uous parameters, but this work provides a plausible framework in which to accomplish this

type of learning. The conjunctive coding approaches explored in this work overcome the

limitations of disjunctive coding in a biologically plausible manner and the unsupervised

methods mentioned earlier for learning sparse, distributed representations might also be

incorporated into the framework used here. Thus, future research in applying the methods

explored here to more general reinforcement learning problems that involve continuous

parameters is promising.

The way in which reward was provided to the new models also plays a critical role in

successfully learning dimensional attention. The currentmodels employ a reward schedule

where reward is given to the network for correct, confident responses as described earlier.

This is in contrast to the more obvious reward strategy of stochastically making category

judgments based onP (K) and rewarding any correct judgment. The reward scheme that

was used here was motivated by the “three-stage learning” profile exhibited by ALCOVE.

In ALCOVE, the association weights are all initialized to zero and the backpropagated error

signal is multiplied by these weights before it influences dimensional attention learning.

Thus, the dimensional attention weights do not change much until the network has begun

to generate strong responses. This initial conservatism with regard to attention weights is

not exhibited if reward is delivered for correct responses with low confidence during the

early parts of training. Initial attempts at using a reward scheme based only on correctness

caused network behavior to deviate substantially from standard ALCOVE. So, even though

the simpler reward schedule makes more sense intuitively, because it is more indicative

of the actual reward from the environment that subjects receive on a trial by trial basis,

it seems that some other neural mechanism may be influencing the effective reward that

drives learning. Biological and computational mechanismsthat could be responsible for

this effect are currently being investigated.
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Eventually I hope to modify ALCOVE to make use of additional biologically plausible

mechanisms of neural computation. This work represents thefirst step in this process, iden-

tifying a biologically realistic method for governing dimensional attention. In particular,

the modeling of ALCOVE’s exemplar layer in terms of the underlying neural mechanisms

that the brain could be employing to account for distance between exemplars in psycholog-

ical similarity space is an enticing area of future research.
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