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Abstract—After three decades of research on human immun-
odeficiency virus (HIV), the causative agent of acquired immun-
odeficiency syndrome (AIDS), a vaccine has yet to be discovered.
Most theoretical and experimental work on HIV vaccines has fo-
cused on the relevant molecular interactions at systemic pH levels,
but HIV is typically transmitted sexually at mucosal pH levels. We
previously developed a computational approach for calculating
pH-sensitivity which predicted optimal transmission at mucosal
pH levels, and was validated by experimental electrophoretic
measurements and envelope protein binding assays. We have
recently augmented this approach using a unique combination
of protein dynamical modeling, parallel computation, and data
compression tools which enable high-throughput calculations.
The resulting fully-automated pipeline was capable of predicting
pH sensitivity for a recent study involving more than 250
unique HIV envelope proteins utilizing approximately 1 million
individual electrostatic surface calculations. We provide strong
evidence that supports the previous hypothesis of a computational
approach to determining the pH sensitivity of HIV envelopes.
Furthermore, a PCA-based indexing method is proposed that
allows for a comparison of biomolecular structures in terms of
electrostatic pH sensitivity. We utilize the results to predict highly
transmissible HIV variants with implications for vaccine design
and efficacy.

I. INTRODUCTION

Over thirty years has passed since the discovery of Acquired
Immune Deficiency Syndrome (AIDS) and a vaccine has yet to
be developed for the Human Immunodeficiency Virus (HIV)
that causes the disease. The challenge that researchers face
is the overwhelming mutation rate of the virus due to host
immune system pressure once introduced to the body.

HIV is typically transmitted during sexual intercourse in an
acidic mucosa pool. Since protein assemblies and their ability
to interact with other proteins are affected by pH, we focus
our attention on this principal component. HIV transmission
occurs when the gp120 portion of the viral envelope protein
(Env), attached to the outer surface of the virus, makes contact
with CD4 protein receptors at the target host cell periphery.
The interaction between the two structures initiates binding
and subsequent cellular infection.

Boeras et al. concluded that the highest populations of HIV
subspecies are not the variants that transmit from host to host
[2]. Their determinations were backed by statistical analysis
of population subspecies and transmission data through direct

investigation of human volunteer donors. With the large pool
of subspecies extracted, and the capture of variants at the
time of transmission, this data set presents a potential to
determine differences in protein structure that may explain the
transmission bottleneck.

II. BACKGROUND

A. Dynamic Electrophoretic Fingerprinting

Electrophoretic mobility (EM) is an experimental measure
of protein surface charge used to characterize and separate
micro-organisms [3,4]. Stieh et al. hypothesized the method
could be applied across saline and pH ranges relevant to
mucosal environments where transmission is common and
results in systemic infection. The study was performed on
trimeric gp120/gp41 Env from clade B HIV-1 strain BX08
[1]. The results described surface charge variations across the
titration indicating decreased Env surface charge in mucosal
environments, complementing the postive surface charge of
the CD4 receptor surface. This potentially could be caused by
variations of the gp120 protein structure and the interactions
of the surrounding solvent where blood plasma and mucous
vary in pH and saline levels.

B. A Computational Approach for Calculating pH-Sensitivity

Stieh, et al. hypothesized that HIV binding rates are influ-
enced by pH and are greater in the acidic conditions present
in genital mucous [1]. A method was produced to calculate
the pH sensitivity of gp120 envelope crystal structures com-
putationally by iterating through a range of pH values while
converting from the protein data bank (PDB) format to the
protein charge radii (PQR) format via PDB2PQR [5,6]. All
titration states (pKa values, also referred to as protonation
or acidic strength) were determined using PROPKA 3.0 [7]
during this process and the AMBER 99 force-field [8] was
used to produce the atomic radii and partial charges. Grid
dimensions were determined using the psize.py script avail-
able with APBS. The Adaptive Poisson-Boltzmann Solver
(APBS) [10] was then invoked for the nolinear solver using
temperatures of 310K with default parameters. To determine
the moleculear solvent accessible surface (SAS), the measure
function of VMD [11] is employed at 0.14nm radius. To



TABLE I
LIST OF DONORS. SUBJECT INDICATES COUNTRY OF ORIGIN, COUPLE

IDENTIFIER AND GENDER RESPECTIVELY. D/R INDICATES THE SUBJECTS
STATUS AS THE DONOR AND COMMUNICATION RECIPIENT, RESPECTIVELY.

TOTAL IS THE NUMBER OF VARIANTS PROVIDED. * INDICATES THE
SUBJECT PAIR IS NOT MENTIONED IN THE BOERAS ET AL. STUDY.

Subject D/R Total Subject D/R Total
R56F R 4 R56M D 13
Z153F* D 11 Z153M* R 10
Z185F* R 10 Z185M* D 10
Z201F D 42 Z201M R 14
Z205F* R 5 Z205M* D 7
Z216F D 24 Z216M R 1
Z221F D 26 Z221M R 10
Z238F D 20 Z238M R 2
Z242F R 3 Z242M D 16
Z292F D 18 Z292M R 6

calculate the mean electrostatic surface potential (ESP) a 3-
dimensional convolution process is executed across the SAS,
summed and divided by the total surface area to produce the
final result.

The resulting ESP data agreed with assayed binding rates
and total bound protein measurements, suggesting CD4-
complementary EM in physiological environments at mucosal
pH levels strongly impacted Env-CD4 binding [1]. So called,
Dynamic Electrophoretic Fingerprinting (DEF) of HIV en-
velopes is an unique application of EM for characterizing HIV
Env proteins and whole virions [1]. However, this research was
performed on a limited set of Env subspecies and needs to be
expanded upon with a larger set of HIV Env proteins to further
test the hypothesis.

C. Target Data

From a pool of more than nine hundred HIV RNA se-
quences, Boeras et al. provided 252 gp120 protein assemblies
drawn from twenty individuals from Rwanda and Zambia.
The structures are in the A1 and C clade domains of HIV
to provide a broad range of comparison opportunities. The
donors consisted of couples of which one was known to
be infected and the other was expected to acquire infection
at some point. Samples were taken prior to communication
of the disease and after infection of the recipient occurred.
The naming conventions used for the sequences indicate the
country of origin, the gender, a subject pair identifier, and a
donor (D) / recipient (R) indicator as shown in Table I.

III. METHODS

The process employed by Steih et al. is enhanced to
perform larger studies in a high-throughput, totally automated,
and phased approach. Utilizing basic system calls to execute
required third party software, the pipeline process executes
across any number of compute nodes in a producer-consumer
model. Here we provide an overview of the process enhance-
ments and the software employed.

A. Structure Modeling

The methods used by Steih et al. are based on crystal
structures to perform the analysis. This method has been

extended to include full structure modeling using Modeller
[12]. Modeller constructs a gp120 monomer based on a set of
gp120 core and gp120 fragment proteins from the Protein Data
Bank that are employed as templates. The template sequence
codes used are 1G9M, 1RZK, 2B4C, 2BF1, 2NY7, 3JWD,
3JWO, and 3LQA. Complete sequence data is consumed by
Modeller in a plain text file that is similar to the FASTA file
layout [13]. The results are returned in PDB [14] format for
the next phase of the operation.

B. Stereo-Chemically Acceptable Conformations

The protein models are then shifted into bound and unbound
conformations via FrodaN [15] to maintain a stereo-chemically
acceptable state. FrodaN was configured to perform targeted
geometrical simulations toward target conformations while
keeping all stereo chemical constraints fixed.

Target states are represented by 1RZK in respective con-
formations. The gp120 structure is only available bound to
a CD4 protein (1RZK) or antibody structure (2NY7). 2B1F
is the only available putative unbound gp120, at the time of
this writing, and is from the Simian Immunodeficiency Virus
(SIV) gp120 core [16]. By utilizing 2B1F as a target for 1RZK
to be manipulated from the bound state to the unbound state
using FrodaN, we are able to provide a consistent bound and
unbound target set for all models in the study. Figure 1 shows
examples of a model structure (A) shifted into the bound (B)
and unbound (C) conformations.

Fig. 1. Model representations of a single gp120 envelope in various con-
formations. Modeller creates a base structure (A) that is guided into stereo-
chemically feasible conformations representing bound (B) and unbound (C)
states.

C. Energy Minimization

To ensure a stable structure pre- and post-manipulation by
FrodaN, energy minimization was performed using Gromacs
[17,18]. This process relaxes the structure and helps to ensure
a stable assembly throughout the process pipeline. We selected
the conjugate gradient algorithm as the integrator and limited
the procedure to 100,000 steps using the Amber99SB-ILDN
force field [9]. Other force fields are not considered since only
minimization is performed.

D. Electro-Static Surface Charge

To calculate the surface potential of each structure, we
first convert from PDB format by invoking PDB2PQR [6].
The standard AMBER forcefield provided by APBS 1.4 was
used, PROPKA was the pH calculation method, and each



value of the pH range is iterated to create 61 PQR files for
each sequence and conformation. The pipeline then executes
psize.py [6] against each PQR to determine grid points, center
of mass, fine and coarse mesh lengths. Using the measure
function of VMD, the solvent accessible surface (SAS) is
determined for the polymer. Screened environmental charges
for the molecule are calculated using APBS. At this juncture of
the pipeline, a convolution process is performed to determine
the surface potential of the gp120 envelope. For each point on
the surface of the system, the sum of the surrounding points
are added to the charge and averaged.

E. Data Compression

The initial estimates of the total data to be produced during
the study of 252 sequences was estimated at approximately
130TB. This is an enormous amount of information to store
and handle just to extract 75MB of results for analysis. The
largest producer of data is APBS, from which all charge data
is stored in DX format which is textual based consisting of
descriptive and numeric content. Basic methods of encapsula-
tion (eg. GZIP) typically achieve 2:1 compression ratios. This
level of compaction is easily achievable by storing binary array
data directly versus native methods provided by APBS. At
64bit precision, no information is lost up to machine epsilon.
In either case, ratios of 2:1 are entirely inadequate for large
scale analysis of structures in the manner presented.

To overcome this limitation we utilize recently developed
methods for compressing floating point data at impressive
ratios. ZFP [19] works exclusively with radix based expo-
nential data by ingesting binary arrays and compressing them
through signal processing methods. A typical operation in our
study produced compression ratios of 75:1, a maximum error
of 0.016 kT/e with a peak signal to noise ratio of 113:1.
This compression method reduced our overall data storage
requirements down to an easily manageable size that preserves
the work for future analysis.

F. Parallel Processing

The original process was developed using bash shell scripts
and pseudo-multiprocessing techniques, suitable for prototyp-
ing the process. In order to evaluate larger sets of sequences,
the process was translated into Python [20] to create a com-
pletely automated system. Once the process was validated
as functional and complete, limitations were evaluated for
alternate execution methods. FrodaN and Gromacs presented
specific challenges in regards to threading and/or multiprocess
execution in single user space. MPI overcomes this issue and
allows for the simultaneous execution of processes across
multiple systems. An MPI driver for the pipeline was created
using Python and MPI4PY [21] software. The method also
employs a unique recovery model where each process is
handed an 64bit integer as an index of the work to be
performed. The driver then extracts a work unit, w, from
the index through mathematical techniques to ensure that all
processes for a particular sequence structure are completed in
order. For example, if we have s sequences, n models per

sequence, 2 conformations per model, and p pH levels per
state, then the total number of events is simply the product of
all terms, s ∗ n ∗ 2 ∗ p. Keeping in mind the process that is
executed, simply taking the modulus of the total by the desired
task is a valid solution. However, the work is performed in
a scattered fashion across the set in the later stages as the
sequence, model, state and pH solution has to be determined
at the time of execution. To achieve an ordered process for
APBS, where sequence 0 is operated on until completion, the
following calculation is employed:

sequenceID = (w/(n ∗ p ∗ 2))%s

Similar calculations are invoked for determining other factors
of the work unit. Take note that all terms of the calculation
are integers and therefore result in an integer operation. Upon
any unrecoverable failure, the work unit is written out to log
files. By using the method described, a failure on a sequence
would create a series of indexes allowing for that range to be
fed back into a slightly modified version of the driver. This
establishes a unique and simple recovery model in the event
that a subsection of the study needs to be reprocessed due to
programming errors, or restarted because of hardware failures.

G. Resulting Data

Sequences from ten transmission pairs from the Boeras et
al. data set were provided for this study. The envelopes consist
of HIV clade domains A1 and C. Samples were taken from
blood plasma, peripheral blood mononuclear cells, genital
tracts, swab-associated, cell-associated and cell-free methods
for a genetically diverse set [2]. The pipeline resulted in the
production of 7, 560 protein structures using Modeller, with
conformations of those assemblies in bound and unbound
states being produced by FrodaN consisting of 15, 120 new
structures. Each envelope is then prepared in 61 different
pH solvents ranging from 3 − 9 in 0.1 increments using
PDB2PQR to produce 922, 320 solutions. All systems are then
calculated for electrostatic surface charges using APBS. The
final size of data is approximately 6.3TB utilizing ZFP and
other compression techniques previously described. The entire
process was completed in approximately 60 days utilizing
a computing cluster resource composed of 4 rack mounted
DELL R815 servers. Each server houses 4 x 16-core 2.3 GHz
AMD Opteron processors (64 cores per machine, 256 total),
512MB of RAM (2TB total), 7.2 TB of workspace hard disk
(28.8 TB total).

H. Electrostatic Fingerprint Indexing

We utilize component data of Principal Component Analysis
(PCA) and Cosine Similarity (CS) to establish a manner of
identification for functionally similar envelopes. To our knowl-
edge the methods described here have never been performed
on protein substructures of a virion periphery.

We utilize the rotation data (eigenvectors) produced by
PCA, a common method of dimensionality reduction [23,24]
used in a wide range of fields. Methods of use include



exploratory analysis and predictive modeling where high di-
mensional multivariate datasets can be presented using reduced
dimensionality better suited for visualization.

The method utilizes CS analysis as a means of comparing
vectors on a Cartesian plane, where the cosine of the angle
between the two vectors is an indicator of the similarity
between them, i.e. cos(0) = 1 indicates the vectors are on
the same line. This holds true for cos(180) = −1 where the
direction of the ray is reversed: the line on which the vectors
exist is still identical. The calculation is:

cos(θ) =
a · b

||a||2||b||2
=

∑x
i=1 aibi√∑x

i=1 a
2
i

√∑x
i=1 b

2
i

where ai and bi are vector components of the nth PC of the
target and the control sequences respectively.

The combination of the two methods of analysis is the basis
of Latent Semantic Indexing (LSI) [25]. LSI is a method of
retrieval that uses PCA to identify patterns between terms and
concepts in unstructured textual data. This process involves
scoring paragraphs of unordered text based on word content
using principal component analysis to generate eigenvectors
representing each paragraph. The method then compares a
query target to the eigenvectors of the unstructured text to
identify similarities of the query versus the text by means of
CS. The application of LSI in this study initially utilizes the
first PC of each representative PCA object as the target query
component and the first PC of the control object is then the
source query term. The analysis of the data utilizes LSI in
a unique manner to predict the likely Env to transgress the
transmission barrier from donor to recipient.

We term the combination of these three approaches, for
this specific application, Biomolecular Electro-Static Indexing
(BESI) for simplicity. We hypothesize that BESI can be used
to produce a clear indication of similarities and compare to
phylogenetic trees to assess the value of the method in a
comparative analysis.

I. Phylogenetic Trees

Phyologenetic trees were constructed as follows. Sequences
were separated by subject, and aligned with MAFFT v7.222
using the L-INS-i strategy [28]. A maximum likelihood (ML)
phylogenetic tree was constructed using the RAxML software,
version 8.2.11 [29] with the HIVW amino acid model of
substitution [30] and 100 bootstrap replicates. Trees were
midpoint-rooted using the phylogenetic visualization software
FigTree, version 1.4.3 [31].

IV. RESULTS

The initial analysis confirmed the process produced ac-
ceptable results in a comparative view of the original work
performed by Stieh et al. [1]. Figure 2 displays a typical
view of a single sequence after processing that expresses
the surface charge of a bound (top) and unbound (middle)
structure and the difference between the structures, bound -
unbound (bottom). Looking at the lower graph in Figure 2,
in the pH range of 4 to 6, one can observe a dip in the
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Fig. 2. Electrostatic surface charges. Figure shows bound (top) and unbound
(middle) surface charges and the difference, bound - unbound (bottom),
illustrating the sensitivity fingerprint.

remaining electrostatic density. This low value range is due
to the higher charge value of the unbound structure and is
analogous to the fingerprint observed in [1]. The phenomenon
is determined across the entire Env set and the additional data
supports the general hypothesis that Env preferentially binds
CD4 at mucosal pH. Figure 3 provides a representative sample
of the more than 250 fingerprints produced.

The raw data produced by the BESI pipeline is dependent
upon the number of models of each sequence produced and
the list of pH values in the titration. For this study we modeled
30 structures per sequence to ensure a wide range of random-
ized ligand conformations were represented by Modeller. We
processed each model in a range of pH levels from 3 to 9 in
increments of 0.1. We processed each sequence with the same
parameters to produce consistent and uniform details across
the study. Results for each sequence/conformation combina-
tion of 61 pH values is then compiled into a single table (m x
n) where ’m’ represents the number of models and ’n’ exhibits
the pH solutions. This data is then processed to determine the
principal components for each sequence.
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Fig. 3. Electrostatic fingerprinting. Figure provides representative fingerprints
displaying the wide range of variation across gp120 structures.The area of
significance is at pH levels between 4 and 6 where the surface charge differ-
ence between bound and unbound conformations is largest. This fingerprint
is present for every gp120 structure evaluated using the current method.

We initially compared the first PC of the unbound named
variant ’Z242MPL25JAN03PCR23ENV1.1DonorTransmitted’
against the first PC of all other subspecies in unbound con-
formations as provided by Boeras et al. and retrieved a signal
for several sequences. We then sorted the results by donor
and score in Figure 4 to provide a clear representation of
significance. Subsequent runs of the process were used to
extract the list of sequences that were within a 20% threshold
of the control. Table II provides data extracted from the initial
cosine similarity analysis and the list was observed to show
signs of significance. Pairs represent Donor/Recipient couples
from [2] and indicate a potentially transmitted sequence from
one host to another. Matches are significant in that they
represent duplicate samples from a single host. Singles are
from hosts with undetermined p24, sero, and genital fluid
sample data as provided to this study.

Additionally, this could be expanded to include a number
of principal components comprising a representation of some
numbered order of variance. This is a standard practice and is
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Fig. 4. Ordered CS signal. Figure represents the cosine similarity of the first
principal component. The x-axis represents each gp120 variant grouped and
colored by donor and sorted by score.

TABLE II
INITIAL FINDINGS. LIST OF SIGNIFICANCE FROM CSA. PAIRS REPRESENT

DONOR/RECIPIENT TRANSMISSION VARIANTS, MATCHES INDICATE
SIMILAR MUTANTS WITHIN A SINGLE HOST, AND SINGLES SIGNIFY A

MATCH TO THE CONTROL ONLY.

Pairs Score
Z201FPL7FEB03ENV2.1 0.956
Z201MPL7FEB03ENV2.1 0.943
Z242FPL25JAN03PCR8ENV1.1 0.800
Z242MPL25JAN03PCR23ENV1.1-DonorTransmitted 1.0

Matches Score
Z221FPL7MAR03ENV2.3 0.890
Z221FPL7MAR03ENV3.3 0.849
Z238FCF15A39 plasmid 9ii 0.865
Z238FCF29oct0215A39 0.938
Z238FPL29nov024 0.852
Z242FPL25JAN03PCR23ENV1.1 0.805
Z292FCA24may0512D10 plasmid 5iii 0.807
Z292FCF24may0512E26 plasmid 10iv 0.911

Singles Score
R56MCF21aug0511 plasmid 1v 0.929
Z185FPL17AUG02ENV3.1 0.898

referred to as dimensionality reduction with several stopping
rules for the selection of significant components such as:
Kaiser’s rule, Scree plots, number of non-trivial factors, a
priori, and percent total variance [26]. Kaiser’s rule states that
all PC’s having a standard deviation of ≥ 1.00 be included
in the set for evaluation [27]. Scree plots are a visual exam-
ination, that could be coded against, referencing an almost
subjective determination of the angle of the graph relative to
the x-axis and implies Kaiser’s rule via a measurement of the
standard deviation. Options 3 and 4 are not applicable in this
reference space leaving option 5 as a suitable alternative to



Kaiser. We dismissed all basic rules in this case on the grounds
that data reconstruction is not taking place. We therefore
present the following explanation for the selection of Principal
Components for this analysis.

We submit that the usable PC’s for our purposes are the first
two PC elements where the mean percentage of variance across
the sample set is above fifty percent. We note that the addition
of principal components above two presents an attenuation of
the data and render a challenge in presentation. Additionally,
we note these inclusions do not make a significant change
in the selection of the closest match across the entire study.
We compare the attenuation effect to that of a photograph,
the most common form of dimensionality reduction in use
to date, the image displays evidence of a third dimension,
however, it is impossible to measure the depth of any one
component as the projection of that object onto a two di-
mensional space distorts the representation through attenuation
of the representative rays. Supporting information can be
referenced at https://github.com/jlphillipsphd/besi/blob/master/
Morton-Phillips Computational Advances-SI.pdf under sec-
tion I ’Selection of Principal Components.’

The selection of additional components also requires the
understanding that each eigenvector is orthogonal to the next.
This fact imposes a requirement of abstraction to avoid cancel-
lation. We circumvent this limitation by calculating the CS for
the second PC and use the mean of the absolute values of the
two cosine similarity scores for each sequence. For example,
the second PC can influence the total similarity of the structure
in comparison to the control by averaging out a strong hit in
the first PC with a weaker hit from the second, ie: the CS of
PC1 = 0.8, and the CS of PC2 = 0.2, the mean of the two
values is given by mean(c(0.8, 0.5)) = 0.5, and the overall
similarity of the selected sequence is reduced. The remaining
piece to be determined is the means by which the results are
compared.

Phylogenetic trees are useful in representing evolutionary
data in a graphical format and are an established and mature
means of inferring the relationships of genetic evolution for
biological species. All images were rendered using R [22] and
the APE version 4.1 [32] package by employing a gradient
color scheme to each tip of the trees as a representation of
BESI scores for each sub-species envelope.

Finally, we make the supposition that
’Z242MPL25JAN03PCR23ENV1.1’ is the result of infection
by ’Z242FPL25JAN03PCR23ENV1.1DonorTransmitted’
based on the following information: the two sequences vary
by a single residue and based on the naming conventions used
by Boeras et al. [2], the polymerase chain reaction (PCR)
designation, and Env identifier of the donor and the recipient
subspecies match. We conclude the accuracy of the indexing
process based on Figure 5. This conclusion is established by
the phylotree arrangement as compared to the closest match
provided by BESI for pair Z242. the graph is interpreted by
familiarizing ones self with the gradient color schemes for
both donor and recipient where the likeness of the subspecies
to the control increases towards the top of the gradient. The

phylogeny tree follows standard methods of representation in
that branches to the left indicate an evolutionary clade and
the length of the branch implies the significant difference
between two clades. The closest score for the donor and
recipient are noted by three(3) asterisk (***) before the
subspecies name. Because this is the control set, sequence
Z242MPL25JAN03PCR23ENV1.1DonorTransmitted has
an automatic score of 1.0. The score for sequence
Z242FPL25JAN03PCR23ENV1.1 can be obtained from
Table II, and is 0.800. The color gradient is based on the
value of the score and can be the same for closely valued
sequences. This illustrates the coloring method used on
the tips and also exposes how a single difference in amino
acid can effect the electrostatic characteristics of a protein
structure.
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 Z242MPL25JAN03PCR23ENV1.1−DonorTransmitted *** Z242MPL25JAN03PCR23ENV1.1−DonorTransmitted 

 Z242FPL25jan038plasmid 

 Z242FPL25JAN03PCR8ENV1.1 

 Z242FPL25JAN03PCR23ENV1.1 *** Z242FPL25JAN03PCR23ENV1.1 
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Fig. 5. BESI applied to the named variant displaying agreement with a
phylogeny tree. Branch length and scale are both observed to indicate proper
selection through evolutionary means and by BESI. This conclusion is based
on the proposition that ’Z242MPL25JAN03PCR23ENV1.1’ is the result of
infection by ’Z242FPL25JAN03PCR23ENV1.1 Donor Transmitted.’

Expanding the application of this method to the other
donor/recipient pairs produces the following list of additional
closest matches to the control:

R56FPL21apr05E7 plasmid b
R56MCF21aug0511 plasmid 1v
Z153FPB13MAR02ENV1.1
Z153MPL13MAR02ENV1.1
Z185FPL17AUG02ENV3.1
Z185MPB17AUG02ENV1.2
Z201FPL7FEB03ENV2.1
Z201MPL7FEB03ENV2.1
Z205FPL27MAR03ENV4.1
Z205MPB27MAR03ENV9.1
Z216FPL17jan0485f
Z216MPL133 plasmid



Z221FPL7MAR03ENV2.3
Z221MPB7MAR03ENV5.4
Z238FCF29oct0215A39
Z238MPL17 plasmid a
Z292FCF24may0512E26 plasmid 10iv
Z292MPL113 plasmid e

Reviewing the BESI/Phylogenetic trees we assert that pair
Z242 is the known transmission set that provides the control
for this research, see Figure 5. Both of the top BESI hits
for the Z242 pair are found in the same clade of the tree,
indicating that the surface charge fingerprint extracted by BESI
is predictive of sequence transmission potential. To express the
accuracy of BESI for determination of transmission subspecies
we present pair R56 (Figure 6) and associated scores (Table
III). Considering that upon infection a mutation takes place,
it should be no surprise that in some cases the mutation drifts
enough to shift the score to the point of a lost signal. This
appears to be the case when referencing Figure 6 and the
associated scores, noting that the donor has a solid hit.

Pair R56 Phylogenetic Tree vs BESI

R56MPL21apr05P5plasmid8−1

R56MCA21aug0516plasmid9iii

R56MPL21apr05C2plasmid7−1

R56MPL21apr05K6plasmid2−4

R56MPL21apr05C5plasmid6−4

R56MPL21apr05K4plasmid4−1

R56MCF21aug0519plasmid3ii

R56MCF21aug0514plasmid2iv

R56MCF21aug0511plasmid1v

R56MCA21aug056plasmid6iii

R56MCA21aug053plasmid5i

R56MPL21apr05G5plasmid5−3

R56MPL21apr05H3plasmid1−3

R56FPL21apr05B6plasmidb

R56FPL21apr05E7plasmidb

R56FPL21apr05B6plasmida

R56FPL21apr05E7plasmida

0.02

 R56MPL21apr05C5plasmid6−4 

 R56MPL21apr05C2plasmid7−1 

 R56MPL21apr05G5plasmid5−3 

 R56MPL21apr05P5plasmid8−1 

 R56MCF21aug0514plasmid2iv 

 R56MPL21apr05H3plasmid1−3 

 R56MCA21aug0516plasmid9iii 

 R56MPL21apr05K6plasmid2−4 

 R56MCA21aug056plasmid6iii 

 R56MPL21apr05K4plasmid4−1 

 R56MCF21aug0519plasmid3ii 

 R56MCA21aug053plasmid5i 

 R56MCF21aug0511plasmid1v *** R56MCF21aug0511plasmid1v 

 R56FPL21apr05B6plasmida 

 R56FPL21apr05B6plasmidb 

 R56FPL21apr05E7plasmida 

 R56FPL21apr05E7plasmidb *** R56FPL21apr05E7plasmidb 
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Fig. 6. Phylogeny versus BESI for pair R56. Displays disparate selections
by BESI indicated by distinct branches of the phylogeny tree.

The recipient is effectively irrelevant in terms of a so-
lution to transmission in that the donor supplies the sub-
species that infects and is reflected in the phylogenetic
trees by the recipient sequences segregating into a sin-
gle clade. Out of the ten donors, six scored above 0.85
with the remaining four having scores in excess of 0.75.
We present all graphs of the donor/recipient pairs for ex-
amination and consideration in the supporting information
document hosted at https://github.com/jlphillipsphd/besi/blob/
master/Morton-Phillips Computational Advances-SI.pdf un-
der section II ’BESI vs. Phylogeny Trees.’ The document
presents all scoring information beside each graph for easy
comparison. The table data for each pair tree is sorted alpha-
betically, then by score and the tables are clearly marked for

TABLE III
BESI SCORES FOR PAIR R56. THE LOW SCORES FOR THE RECIPIENT

(R56F) ARE IN AGREEMENT WITH THE PHYLOGENY TREE OF R56
(FIGURE 6) DISPLAYING THE ACCURACY OF THE SELECTION METHOD

PRESENTED BY BESI. THE DONOR HAS A HIGH MATCHING SCORE,
INDICATING THAT THE SUBSPECIES OF TRANSMISSION IS PRESENT.

Role Sequence Score
Recipient R56FPL21apr05B6 plasmid a 0.563919054126656

R56FPL21apr05B6 plasmid b 0.64914025990008
R56FPL21apr05E7 plasmid a 0.668113200596071
R56FPL21apr05E7 plasmid b 0.726523796985736

Donor R56MPL21apr05C5 plasmid 6-4 0.069038035927937
R56MPL21apr05C2 plasmid 7-1 0.240246676350975
R56MPL21apr05G5 plasmid 5-3 0.385319672126639
R56MPL21apr05P5 plasmid 8-1 0.562805416203866
R56MCF21aug0514 plasmid 2iv 0.624100461824737
R56MPL21apr05H3 plasmid 1-3 0.641810107144584
R56MCA21aug0516 plasmid 9iii 0.6510877349576
R56MPL21apr05K6 plasmid 2-4 0.661026070503639
R56MCA21aug056 plasmid 6iii 0.687419348128837
R56MPL21apr05K4 plasmid 4-1 0.709966645467017
R56MCF21aug0519 plasmid 3ii 0.752070920633736
R56MCA21aug053 plasmid 5i 0.784921204312612
R56MCF21aug0511 plasmid 1v 0.914998937284965

’Donor’ and ’Recipient’ roles. The graphs are vector based
graphic presentations to allow close examination as some
representations are tightly nit. Each ’closest hit’ is marked
with three (3) asterisk (***) to allow one to easily distinguish
the BESI selections. The color gradients can be used to quickly
determine the relative score of each sequence in comparison
to the evolutionary data. Keep in mind that the BESI score
is relative to a single control sequence and is not intended to
match the phylogeny tree exactly.

V. DISCUSSION

Envelope binding rates are influenced by pH and are greater
in the acidic conditions present in genital mucous [1]. Stieh
et al. additionally provided computational evidence to support
their findings by computation of the mean surface potential
of the gp120 envelope and comparing the difference between
bound and unbound gp120 conformations across a wide pH
range. The difference in pH has been shown to alter the
residual surface charge of the Env and shift the binding charac-
teristics in laboratory tests [1]. The overall goal of this research
is to predict which Env variants are most likely to bind to CD4
receptors while taking into account the role of environmental
pH in the transmission process. This information would allow
researchers to focus on the communication of the virus in a
preventative manner, on a focused set of subspecies.

BESI represents a high throughput method for processing
sequences in an automated fashion. The program is easily
configured and the pipeline is efficient in terms of execution
time. The driver developed for this study utilized a simple
work unit delivery method and recovery scheme.

The inclusion of full structure models enhances the original
process and establishes a more realistic approach to studying
protein sequence data. Additionally we developed a PCA-
based method of structure evaluation, in terms of electrostatic



fingerprinting, similar to LSI, to provide a means of visual
qualitative comparison between phylogeny and electrostatic
surface charge developed by Steih et al.

In addition to the analysis presented here, we suspect BESI
would be a useful process for a variety of fields such as pro-
tein/enzyme engineering for optimal performance in different
pH conditions, developing pH-specific functionality, or evolu-
tionary studies of pH-dependent protein function acquisition.
For detailed implementations at an engineering level, BESI can
be used to pre-evaluate structures before physical experiments
take place that have the goal of specific pH functionality.

Despite the increased number of gp120 assemblies used
in this study compared to Stieh et al., further examination
across larger numbers of subspecies would be beneficial. The
study by Boeras et al. sampled in excess of 900 different
RNA sequences across sixteen individuals. Performing BESI
across the provided population by Boeras et al. has exposed
unique, identifiable electrostatic characteristics which enable
their identification (useful for vaccine development) and ver-
ified the hypothesized mechanism. However, the assumptions
of transmission and the accuracy of the provided data may play
a role in the relative statement of positive results. For example,
the current process is generalized by the mean electrostatic
charge of the gp120 structure and the possibility of focus at
the periphery of the Env, specifically at the CD4 binding site,
presents an opportunity to investigate.
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