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ABSTRACT
Research in the field of HIV transmission has yet to provide a
vaccine for this imponderable virus. Though progress has been
made to extend the life of those chronically infected, a solution to
the transmission of the disease remains elusive. Previous studies
involving electrostatic surface charge analysis revealed the sensi-
tivity of gp120 envelope (Env) protein function to changes in pH
across levels consistent with those found in the human body. A
prototype computational approach was developed and found to
agree with these results. A refined process was developed capable
of classifying Env sequences/structures through machine learning
techniques. We expound this analytical procedure to encompass
residue-level analysis and include minimization steps to ensure the
integrity of the protein models. Additionally, the process has been
enhanced with advanced data compression techniques to allow for
more in-depth analysis of the systems. In this research we explore
a new technique termed electrostatic variance masking (EVM), that
reveals what we hypothesize to be the mechanistic residues respon-
sible for the pH sensitivity of Env binding site. The data implies that
a conserved set of core residues may be responsible for modulation
of the binding process in varying environmental conditions mainly
involving pH.
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1 INTRODUCTION
Despite three decades of study on Acquired Immune Deficiency
Syndrome (AIDS), a vaccine against the Human Immunodeficiency
Virus (HIV) is still in development [22]. HIV’s high rate of mutation
allows antigenic regions targeted by host immune responses to
vary greatly across HIV virions. Most research has focused on in-
ducing so-called broadly neutralizing antibodies (bnAbs) to combat
the infection. BnAbs target protein antigenic regions conserved
due to functional requirements of the binding process [8]. The
gp120 extracellular subunit of the viral envelope protein (Env) is
responsible for binding CD4 on the surface of host T-cells to begin
infection; this Env subunit is a common target for bnAbs [41]. Env
fragments selected via computational optimization to potentially
invoke the production of bnAbs are often employed in current work
on vaccine production [14]. Studies using these Envs have varied
from successful [4] to unsuccessful [26]. One potential explanation
is that environmental impacts on gp120-CD4 interactions are not
considered during Env selection. In particular, isolating bnAbs from
a blood/plasma environment (slightly basic pH) might obfuscate
the impact of mucosal environments (often acidic pH) on transmis-
sion. Therefore, it is reasonable to assume that both Env structure
and binding affinity with CD4 and/or bnAbs will be altered under
physiological conditions consistent with sexual transmission.

Recent experimental and computational studies have shown
that pH impacts both Env conformation and CD4 binding. In 2013,
Stieh et al. hypothesized that electrophoresis could be applied at
a protein level and performed direct experimentation to reveal a
pattern of change in surface charge across a physiological pH range.
The findings produced a fingerprint of trimeric gp120 indicating
a change in electrophoretic mobility from negative to positive as
pH increased [38]. A computational pipeline was developed which
produced results consistent with those of laboratory experiments: a
difference was seen from negative to positive as pH levels increased
in the physiological range consistent with observed increase in
Env-CD4 binding affinity at acidic pH.

Morton et al. enhanced and refined Stieh et al. by incorporating
protein modeling, parallel processing, structure energy minimiza-
tion, and advanced floating point data compression that allowed
for larger studies to be performed and a greater depth of analysis
to take place [31]. The procedure also developed a classification
method called Biomolecular Electro-Static Indexing (BESI) based
on principal component analysis (PCA), cosine similarity analysis
(CSA) and is loosely based on latent semantic indexing (LSI) [10].
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Howton et al. independently introduced an extension to the
prototype computation from Stieh et al. to the protein residue
level [17]. Howton approached the problem with the hypothesis
that strains in chronic infection, so called chronic control (CC)
strains, will likely have adapted to systemic pH, and will be less
efficient at binding CD4 under acidic conditions when compared to
transmitted founder (TF) strains. Using computational modeling,
some differences between TF and CC strains as well as between
B and C clades were discovered using a more extensive set of 28
Env proteins [17]. However, the specific molecular mechanism (eg.
surface residues and mutations) responsible for the pH sensitivity
of the gp120-CD4 interaction could not be determined using the
resulting data. Again, the simulations performed by Howton et al.
were limited due to the amount of data being produced using the
original methods developed by Stieh et al.

In this study we have incorporated the prototype developed
by Howton et al. into the BESI pipeline to utilize state-of-the-art
compression libraries and our machine learning technique for de-
termining transmitted variants [31]. We expand the research across
a broader solvation range and extend BESI to perform residue level
analysis more thoroughly than was possible in Howton et al. Addi-
tionally, we introduce an imaging technique based on the variance
of pH observed across all amino acids of the protein structure.

2 BACKGROUND
For each of 24 individuals, Howton et al. analyzed a TF/CC sequence
pair. 18 pairs were drawn from clade B, and 6 pair from clade C. TF
sequences were defined as those subspecies collectedwithin the first
6 months of infection, and CC sequences were collected after the
initial period prescribed for TF as designated by Parrish et al. [34]. B
clade sequences were obtained from [3, 7, 9, 20, 25, 36, 39, 40] and C
clade sequences were obtained from [1, 24, 29]. Additional sequence
details including accession numbers and sequence alignments can
be found in [16].

Howton et al. found that the pH sensitivity of gp120 charge
density was mildly more sensitive in CC strains when compared
to TF strains. One possible explanation for these results might be
that the typical rules used to distinguish TF/CC are not sufficiently
stringent since sequence diversity within the first 6 months of
infection may be broad enough to dilute the responsible signal [6].

Given the progress in data compression and scoring of trans-
missible variants developed by Morton et al., revisiting the more
diverse data set used in Howton et al. through the BESI framework
would be advantageous. The refinements in BESI would produce
clearer results and allow for a broader range of analysis to be per-
formed in the simulations. In particular, BESI scores would now
provide an objective, structure-based metric for determining highly
transmissible variants in the data set. Such information would be
informative for Env acquisition during vaccine development where
selection of highly transmissible variants could potentially increase
efficacy. Additionally, during this simulation an imaging process
was developed that displays the pH active residues in a conserved
and highly localized region of the gp120 envelope.

3 RESULTS
3.1 Electrophoretic Finger Printing
As the standard for validation of calculating the electrostatic charges
on the surface of the assemblies we present this sample electrophoretic
fingerprint as proof of the process and data retrieval methods. Lower
values indicate more negative surface exposure for the bound con-
formation of gp120 relative to the unbound. The prevalence of more
negative surface charge on the bound conformation of gp120 at low
pH suggests that gp120 favors the bound conformation at these
pH levels. Hence, gp120 is also primed for binding the positively
charged CD4 target at low pH, consistent with previous findings.
While some variation among the Env subunits exists, this example
indicates the low pH trigger is a general property of the gp120
subunit.
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Figure 1: Fingerprint of sequence 0 3_CH40TF indicates all
processing and data retrieval processes were executed cor-
rectly. Negative values indicate environmental pH where
the Env prefers the bound conformation.

3.2 Full Structure Binding Energies
Howton et al. concluded that the differences in binding energies be-
tween clades and classes were minimal and therefore inconclusive.
We provide this section as a confirmation of the process introduced
by Howton et al. and to confirm their findings even through a more
refined process. We express the similarities of findings using Figure
2. Observing the specified graph, one can determine variation be-
tween the clade and class combinations exists at the lower spectrum
of pH. While differences in amplitude do exist, the graphs follow
similar trajectories along the x-axis. The variation in amplitude
may be explained by the number of variants observed from the
two clades, where clade B is the dominant factor in the study by
approximately 3:1. Classes are distributed evenly across the study
and these facts invoke the need to observe a larger set of sequences
to determine if differences exist at lower pH.

3.3 Biomolecular Electro-Static Indexing
The BESI analysis of the data is used to create a principal component
subspace to compare and classify Env charge data presented by
APBS [2]. With the exception of donor/recipient comparisons being
made, a functional comparison was performed against the control
subspecies of Morton et al. [31]. BESI made a limited selection
of gp120 structures closely related to the control in terms of the
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Figure 2: Binding energies of clades and classes. Clade B vs.
Clade C (top) and class CC vs. class TF (bottom)

functional capabilities of the assemblies. We hypothesize that BESI
is a unique method of Env classification that can be used to focus
research efforts on a limited number of predicted active sequences
versus blind trials. Referencing Figure 3, the overlay of scores in a
color gradient indicate the scale of separation amongst subspecies
functionally. The scores range from zero to one and are least to most
similar to the control sequence respectively. Morton et al. noted
that while the selected transmitted founder Env and the control
sequence were different by a single amino acid, the TF score is 0.807,
displaying the range of difference a single residue can introduce.
The methods used to produce Figure 3 can be found under "Methods
and Materials."

3.4 Electrostatic Variance Masking
The selection of amino acid assemblies across functional sections of
a protein provides a unique view of the Env of what we hypothesize
to be the mechanism involved in the binding process. The method
described focuses on the surface charge variance of a residue posi-
tion across all unbound gp120 assemblies. Performing the selection
process prescribed by EVM (see Materials and Methods) produced a
uniform selection of amino acids for each of the chosen sequences.
Statistical information returned from this data set is as follows:
Standard Deviation = 101.9, 1/2 Standard Deviation = 51.0, Variance
cutoff selected = 51.0, % of variance selected = 75.7, Number of
Selected Residues = 64.0, % of residues selected = 11.6.

Figure 4 displays the variance across all gp120 assemblies in this
study. The reader should note that EVM involves the entire residues
set in all Env subunits processed.

By completing themethods in ’Selection ofMechanistic Residues’
as described, the sequence logo graph of Figure 5 is presented to

Figure 3: BESI score overlay via gradient onto phylogeny
tree of sequences
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Figure 4: Graph of variances for each residue from all se-
quences.

display the conservation of amino acids EVM selects across the
sequence set.

Additionally, we applied the following conditions to produce a
sample set of structures and imagery that displays the power of the
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Figure 5: Logos representation of the conservation of amino
acids through EVM selection method

approach. We selected a set of sequences based on BESI score. We
selected the highest BESI score ’0.955’ to acquire ’56_CH42M6’ and
a low score of ’0.340’ to select ’B.NL.1996.H1_62_1A8.EU744010’
which also contains the longest sequence chain in the set.

We then applied the following additional methods to the pre-
scribed guidelines (see Materials and Methods) to invoke a percent
variance selection process similar to those used in PCA. For the
sequences to be imaged, the minimum possible variance value is
determined to be greater than 51. This selects approximately 75%
of the total variance and presents 64 residues to image. The re-
sults show that approximately 11% of the amino acids (based on
all aligned residues) contribute just over 75% of the total variance
across the entire sequence set. We present a graph of the total
variance in Figure 6.
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Figure 6: Graph of all residues in the set indicating the ma-
jority of observed variance exists in the least number of
residues. Red horizontal line is the selected cutoff value.

The method produces the following actual residue selection lists
(not HXB2):
• 56_CH42M6: length - 64
14 18 31 58 63 65 66 69 73 81 90 91 92 93 94 170 172 184 185
187 216 219 220 221 222 224 225 231 232 234 254 258 265 267
333 339 340 345 347 360 394 395 397 398 399 411 413 415 418
423 424 440 441 442 443 444 446 448 449 450 451 452 454 456
• B.NL.1996.H1_62_1A8.EU744010: length - 64
14 18 31 58 63 65 66 69 73 81 90 91 92 93 94 176 178 190 191

Figure 7: Binding site view of Env 56_CH42M6. The α2 helix
is clearly marked to confirm the binding site location.

Figure 8: Binding site view of Env
B.NL.1996.H1_62_1A8.EU744010. This protein is oriented
identically as Figure 7

193 222 225 226 227 228 230 231 237 238 240 260 264 271 273
339 345 346 351 353 366 414 415 417 418 419 431 433 435 438
443 444 461 462 463 464 465 467 469 470 471 472 473 475 477

For each of the selected assemblies we loaded the first model of
the unbound conformations into VMD. We produced an additional
representation of the molecule and selected the residue set pro-
vided. We present the primary representation as a cartoon colored
by secondary structure. For the residue selection a red, transpar-
ent surface is selected. The imagery of Figures 7 and 8 display the
similarities across gp120 structures and expounds upon the con-
servation of residues at or near the CD4 binding site. These data
suggest that mutation of residues outside the CD4 binding site is
the primary mechanism for modulating the potential transmission
rate of the virus since residues outside of the conserved binding
site are primarily where sequence differences arise. Allosteric in-
teractions must drive much of the process in this case, but BESI
cannot determine this definitively since it only works on the static
endpoints of the binding process. It might be possible to model
these transitions using molecular dynamics or FRODAN, but the
increase in APBS calculations needed to sample the intermediate
states is still computationally prohibitive with current software.
However, we hope to utilize MD simulations on a subset of these
sequences in future work.



We then invoked MAFFT v7.273 using E-INS-i with an open
gap penalty of 2.0 as described by Foley et al. in [15] and align
each structure individually to HXB2CG. We convert the selections
previously mentioned to the HXB2CG alignment as describe by
Korber et al. in [23] to produce identical alignments for the two
selected sequences. The HXB2CG residues selected are:
• 47 51 64 91 96 98 99 102 106 114 123 124 125 126 127 199 201
213 214 216 245 248 249 250 251 253 254 260 261 263 283 287
294 296 364 370 371 376 378 391 426 427 429 430 431 443 445
447 450 455 456 470 471 472 473 474 476 478 479 480 481 482
484 486

For all forty-eight (48) structures in this simulation, forty-one(41)
presented identical HXB2CG selectionswhile the remaining seven(7)
structures varied by a single identical selection. The alternate list
of selected residues with the difference in red bold-faced font are:
• 47 51 64 91 96 98 99 102 106 114 123 124 125 126 127 199 201
213 214 216 245 248 249 250 251 253 254 260 261 263 283 287
294 296 364 370 371 376 378 396 426 427 429 430 431 443 445
447 450 455 456 470 471 472 473 474 476 478 479 480 481 482
484 486

The seven(7) structures with the alternate selection were evenly
distributed, to the extent possible, across TF/CC classes. Five(5)
of these variants were of clade B the dominant subspecies of this
study.

Most notably, EVM selected amino-acids 124-127, 283, 364, 370,
371, 426-431, 455, 456, 470-474, 476 which are CD4 contact residues.
Other pertinent selections aligned to the following: Residues 64,and
91 are adjacent to interface contacts with gp41. Residue 123 is a
co-receptor binding site outside of V3. Residues 199, 201,251 are
co-receptor specific R5/X4 sites. Residues 261 and 263 are adjacent
to glycosite 262. Residue 294 is adjacent to glycosite 295. Residue
296 is the start of V3 loop. Residue 391 is adjacent to glycosite 392.
Residue 396 is at the V4 hyper-variable hot spot. Residue 447 is
adjacent to glycosite 448. Descriptions per the ’HXB2 Annotated
Spreadsheet’ [21].

4 DISCUSSION
These results suggest that the TF/CC distinction is too non-specific
to elucidate transmitted variants in a reliable way due to the rapid
evolution of the viral pool shortly after transmission. This would
also explain the mild differences between TF/CC classes and the
minimal observation of mechanistically-informative signals in the
previous study. Nevertheless, the pH-sensitivity of gp120 under
acidic conditions was still observed across all TF/CC pairs.

The processes involved with BESI and EVM show the effective-
ness of the pipeline for analyzing pH sensitivity for protein-protein
interactions. The methods build upon previous approaches for com-
puting electrostatic potential across a range of environmental con-
ditions [30, 38] by integrating high-throughput structural modeling,
conformational search, and targeted docking for a large set of se-
quences [11, 13, 35]. Electrostatic Variance Masking was able to
correctly identify the gp120-CD4 binding interface even in the ab-
sence of CD4 surface data which has never been performed before
to our knowledge. These results suggest that the technique might
be useful in the future for identifying pH-sensitive binding sites in
other protein-protein interactions.

Additionally, this work shows the importance of the pH sensitive
binding mechanism and its potential role in the gp120-CD4 inter-
action. The binding site residues were correctly identified using
the residue-specific EVM process suggesting that mutations in non-
binding site residues drive binding sensitivity allosterically. This is
particularly important for HIV vaccine research because the CD4
binding site is an important target for vaccine conception, and pH
has been shown to affect antibody binding at pH levels associated
with mucosa [12]. Additionally, bnAbs typically target the CD4
binding site of gp120 [41]. Investigations into the pH sensitivity
of gp120-bnAb interactions using the BESI and EVM are currently
ongoing.

5 MATERIALS AND METHODS
5.1 Env Sequence Data
The sequence set constitutes twenty-four (24) pairs of Env consist-
ing of one (1) TF and one (1) CC gp120 structures from Clades B
and C with eighteen (18) and six (6) pairs respectively. Accession
numbers with clade/class designations can be found in [16]. B clade
Env were acquired from [3, 7, 9, 20, 25, 36, 39, 40] and C clade
sequences were obtained from [1, 24, 29].

5.2 Binding Energies
Full structure and residue binding energies (BE) were calculated us-
ing the procedures described in [16] with the following exceptions:
1) additional energy minimization steps via Gromacs [5, 27] and 2)
compression techniques via ZFP [28] as described in [31] to allow
for full solvation analysis of the protein structures.

5.3 BESI
Processes developed in [31] were executed for this study to generate
the surface charge data and BESI scores. The phyologenetic tree
is constructed as follows. Sequences were aligned with MAFFT
v7.273 using the L-INS-i strategy [19]. A maximum likelihood (ML)
phylogenetic tree was inferred using the RAxML software, version
8.2.11 [37] with theHIVWamino acidmodel of substitution [32] and
100 bootstrap replicates. Trees were midpoint-rooted and rendered
using APE version 5.0 [33]. Expression of the phylogenetic tree
involves minor differences where Donor/Recipient information is
unavailable for the sequence data used for this study.

5.4 Residue Electrostatics
Residue electrostatic data was derived in the same manner as de-
scribed in [17] with the following exceptions: 1) additional energy
minimization steps via Gromacs [5, 27] and 2) compression tech-
niques via ZFP [28] as described in [31] to allow for full solvation
analysis of the protein structures.

5.5 Selection of Mechanistic Residues
Selection of residues that respond to pH shifts involves calculating
the electrostatic charge variance of each residue across all aligned
sequences. Where gaps are encountered in the alignment a value of
zero (0) is assigned. For each residue, the median value of individual
residues is calculated for each model in the pH range of 3.0 to 9.0
with 0.1 increments. The mean and variance of each position in



the global sequence alignment is then calculated and stored. This
method allows us to effectively filter out residues which showed
small variations in mean surface charge across the pH shift concur-
rent with relatively little impact on electrostatic binding energy.

For each sequence alignment a reverse mapping is created to
align selections with correct residue numbers on the individual
proteins. Where a gap exists in the alignment a value of negative
one (-1) is assigned. This allows the determination of a cutoff value
for the variance where a selection of a gap will show -1 and is con-
sidered an invalid selection. The selected residues are then applied
to a VMD representation [18] to display the substructures involved.
For this method of imaging residue structures participating in the
mechanistic functions of the binding function we have termed the
process Electrostatic Variance Masking (EVM).
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