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Abstract—Neurobiologically-inspired working memory models
demonstrate human/animal capabilities to rapidly adapt and
alter responses to the environment via context-switching and
error monitoring. However, the application of these models
outside of reinforcement learning problems has been relatively
unexplored. We present a new framework compatible with
Tensorflow/Keras enabling the integration of working memory-
inspired mechanisms into typical neural network architectures.
These mechanisms allow models to autonomously learn multiple
tasks, statically or dynamically allocated. We also examine the
generalization of the framework across a variety of multi-context
supervised learning and reinforcement learning tasks. The re-
sulting experiments successfully integrate these mechanisms with
multi-layer and convolutional neural network architectures and
the diversity of problems solved demonstrates the framework’s
generalizability across a variety of architectures and tasks.

Index Terms—cognitive architectures, machine learning, task-
switching, multiobjective, working memory

I. INTRODUCTION

As humans, we are particularly good at reacting and adapt-
ing to new situations in the environment. Not only can we
quickly learn from our actions, we can also recognize changes
in the environment when something unexpected occurs. In
a situation that you are unfamiliar with, you would likely
assume your actions and decisions are incorrect when the
expected outcome is not observed. When an environment is
more familiar and you do not observe the outcome that you
expected (e.g. turning on a TV, flipping a light switch), you are
more quickly to conclude that something in the environment
has changed, rather than your actions being incorrect. Our
ability to rapidly adapt and change our behavior based on the
context of a situation is in major part due to one of our brain’s
executive functions known as working memory.

Working memory is a form of short-term memory that plays
a critical role in influencing our decision-making process.
Instead of requiring the complete unlearning/relearning of a
task, working memory facilitates the ability to rapidly and
dynamically alter our responses to changes in the current
situation. While there are many models that can accurately
demonstrate and explain the mechanisms involved with work-
ing memory [1]–[10], they are not currently utilized much
outside of the realm of working memory research. Further-
more, while mechanisms for including contextual information

in traditional neural networks have been explored before [11],
current solutions often require the inclusion of additional
contextual input and prohibit autonomy. The incorporation
of the context-driven learning/switching mechanisms from
working memory models could allow a typical neural network
to autonomously detect and respond to changes in the expected
output without providing any explicit context or assistance.

In this paper, we present a general-use framework for
implementing the mechanisms inspired by working memory
models into common neural network architectures. As this
framework is built around Tensorflow Keras, the new frame-
work components can be added to existing model architectures
with minimal adjustment. Along with the design and devel-
opment of the mechanisms and components, we also aim to
demonstrate the framework’s generalizability by applying it
across a variety of problems in both supervised learning and
reinforcement learning settings. These experiments include the
utilization of multilayer neural networks, convolutional neural
networks (CNNs) and reinforcement learning using both 1-step
and n-step Q-learning.

II. BACKGROUND

A. Working Memory

The mechanisms involved in the definition and separation of
contextual information stems from the current understanding
of working memory and its neurobiological basis in the
mesolimbic dopamine system (MDS) and prefrontal cortex
(PFC). One study by O’Reilly, Noelle, Braver, et al. [1]
provides much insight into these mechanisms and our ability
to rapidly update goals and focus on particular tasks. Working
memory is an activation-based memory, meaning that memory
is retained through persistent neural firing rather than weight-
based updates. Learning through weight-based updates is
significantly slower and results in perseveration as previously
learned information must be unlearned or relearned if task
demands have changed. Through activation-based memory and
association of contextual information with these neural states,
the information contained in working memory can be rapidly
updated. It is believed that the PFC maintains a memory
representation of the targeted dimension or feature, providing a
form of rule-like ”top-down” support, or ”biasing,” to influence
the perceptual processing and the selection of actions [1].



While the PFC retains the memory representations, the
updates to working memory are handled via the MDS. It
has been shown that the contents of working memory are
updated when neurotransmitter dopamine levels are phasically
elevated [4], [5], [7], [8], [12]. Because they are responsible
for broadcasting dopamine signals [13], the MDS functions
as a form of gating mechanism that can update or protect the
memory representations currently stored in the PFC [4]–[6],
[8], [12], [14]. When an expected reward is not delivered,
updates to working memory are triggered via a negative
error signal. Learning in the presence of these large negative
error signals is believed to be limited since the contextual
information was likely incorrect [2], [12].

B. Holographic Reduced Representations

Some more recent models have abstracted away some of
the neural details in the above models [9], [10]; in particular,
activation-based recurrent layers for handling PFC representa-
tions are instead encoded using holographic reduced represen-
tations (HRRs) [15]–[17]. An HRR is a fixed-width vector
that is created by generating real-values from a Gaussian
distribution [18]. Any abstract concept can be represented by
a single HRR vector; for example, the color blue, a ball, etc..
These HRRs can be combined through the use of circular
convolutions, resulting in a new HRR that represents the
combination of the overall concept. This new HRR is highly
likely to be orthogonal to each of the source HRRs without
any increase in dimensionality. While the HRRs themselves
are primarily used to automate the distributed encodings of
conceptual information, the orthogonality of the resulting
circular convolutions allow an artificial neural network to
easily distinguish and separate the values of actions based on
context.

The computation of the circular convolution, typically de-
noted as ~, can be performed on any two vectors of the same
length, n, with a time complexity of O(n log n) through the
use of Fast-Fourier transforms (FFTs). The circular convolu-
tion is defined by the equation:

c~ x ≡ f−1(f(c)� f(x)) (1)

where f is a discrete Fourier transform, f−1 is the inverse
discrete Fourier transform, and � is the component-wise
multiplication of two vectors [18].

C. n-task Learning

Inspired by the models above, n-task learning (nTL) is an
approach to autonomous multi-task learning with reinforce-
ment learning problems in mind [19]. Analogous to rule-
like representations in the PFC, the model implements task
contexts in the form of abstract task representations (ATRs),
each of which internally is a unique HRR. By also encoding
the states and actions each with a unique HRR, state/action
pairs can be contextualized by convolving them with the active
context ATR. The resulting HRR can then be given to the
model as input, allowing it to discretely learn and predict
the value of an action during a particular state and context.

The expected reward is also modeled internally for each of
the available contexts using standard temporal-difference (TD)
learning. When the TD-error surpasses a certain threshold, it
indicates the reward received by the model was unexpected,
thus triggering a context-switch, and the next context ATR is
used. These ATRs may be allocated statically, or dynamically
by monitoring the average expected reward across all tasks. If
the average expected reward across all contexts falls below a
certain threshold, a new context may be added, however the
model’s weights will be re-initialized.

D. Autonomous Context Learning

The research above demonstrates how working memory
models have been used to explain the neural basis of context-
switching behavior [1]–[10], [19]. In order to fully auton-
omize the selection and utilization of contexts, a neural
network model requires several internal mechanisms. First
is the ability to maintain a form of context for each of the
possible functions. The number of contexts maintained could
be specified explicitly upon model creation or dynamically
allocated as needed. The model must then be capable of
applying contextualization information to the inputs using
these maintained contexts. Finally, the model would require
self-monitoring mechanisms to determine and switch to the
appropriate contexts by analyzing the provided feedback used
to adjust the target value to properly adapt to the task.

While the models described here are capable of autonomous
context learning, there are certain aspects of their imple-
mentation that can be quite limiting. For example, the uti-
lization of these mechanisms outside of the reinforcement
learning domain has been relatively unexplored. Though the
working memory models described above have successfully
demonstrated the mechanisms required for context learn-
ing/switching, they are rarely utilized outside the realm of
working memory research. nTL provides a robust framework
for solving a broad set of reinforcement learning problems
through the integration of context learning/switching mecha-
nisms. While successful, the approach used to model the ex-
pected reward makes learning temporally-extended reinforce-
ment learning tasks rather difficult. Furthermore, nTL also
requires weight re-initialization when dynamically allocating
task contexts. We aim to address these issues by creating a new
general-use deep learning framework. The framework should
enable integration of context switching mechanisms inspired
by the working memory models mentioned previously into
common/existing neural network architectures with minimal
modifications required. Additionally, the new components in
the framework should be compatible with more learning
approaches outside the realm of reinforcement learning.

III. METHODS

A. Framework Design & Implementation

The framework introduces various new components that
are compatible with Keras/Tensorflow and require only minor
modifications to standard training loops to execute. These
modifications are described with each of the corresponding



components below. The source code for the framework and
experiments is publicly at https://github.com/DLii-Research/
context-learning.

1) Context Layer and Abstract Task Representations: One
of the fundamental aspects of the framework is its ability to
utilize ATRs to differentiate data based on an active context.
While there are different potential methods for generating
these ATRs [19], the framework continues to implement these
ATRs as HRR vectors inline with the working memory models
mentioned previously. Each ATR is a unique random unitary
HRR, and each ATR represents a single context. With a neural
network, the input/activation vector can be convolved with the
active context’s ATR and fed forward through the network.
The circular convolution results in a new vector that is roughly
orthogonal to each of the original vectors, enabling the model
to separate learning of the individual tasks and reduce potential
catastrophic interference effects.

To integrate ATRs into the network, we introduce the
concept of a context layer. This layer is analogous to PFC
layers in the previously described working memory models
and the ATRs are analogous to PFC stripes within the PFC
layers which encode specific contextual activation patterns.
The context layer maintains a unique ATR for each of the
contexts, convolving the previous layer’s output with the active
context’s ATR to produce the new output. Inserting this layer
into a neural network is enough to grant the network the ability
to learn and predict under different contexts without providing
any additional input. As the ATRs are HRRs internally, the
layer contains no trainable weights, and thus it depends
on a subsequent downstream layer to properly handle the
error-monitoring context-switching mechanisms. The gradients
generated at the subsequent layer are used to compute the
weight deltas to be used for calculating the context loss as
described in the next subsection.

2) Context Switching Mechanisms: In order for the context
layer to switch contexts autonomously, we developed a loss-
based switching mechanism inspired by the working memory
models and the mesolimbic dopamine system mentioned pre-
viously. This mechanism is integrated as a module within the
context layer and invoked from the training/evaluation loops.
To reliably switch contexts, it is important to first determine
the loss contributed strictly by the given context layer. Using
the computed backpropogation gradients at the subsequent
layer, we can calculate the deltas of the context layer’s weights
to monitor the error caused by the layer. By accumulating
the mean-squared deltas over each batch of a training epoch,
we can obtain a single positive value, ∆C that represents the
overall error/loss for the current context. If the subsequent
layer contains bias weights, the gradients for these weights
may be used to compute the context deltas to reduce the time
complexity of the calculation. Otherwise the mean-squared
deltas/gradients for the non-bias weights are used. In order for
the model to assess its performance on a task under a particular
context, the expected loss is maintained internally for each
context using a TD-learning approach with the following:
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Fig. 1: The top plot represents the modeled context loss
(A(atr)), while the bottom plot represents the computed
context delta (δ) under the active context ATR. The task begins
with context 0, and the context delta is initialized to the first
loss observed. When the task is switched, a large context delta
is produced. When the context delta falls below the threshold,
the model switches to the next context. The cycle repeats as
the task is switched every 20 epochs.

A(atr)← A(atr) + αA[∆C −A(atr)] (2)

where atr is the context ATR and αA is a learning rate
parameter. During early training, the values of ∆C are not
so important since large context loss is expected; but as the
network learns the function, this loss approaches zero and
the values of ∆C become more meaningful. To determine
when a context switch should occur, the context delta needs
to be computed by taking the difference between the expected
context loss and the current context loss as shown in the
equation:

δ = A(atr)−∆C (3)

At the end of the training/evaluation epoch, the computed
value of δ can be directly compared against a threshold value
tswitch (in the range (−∞, 0]). If δ exceeds this threshold,
the active context is swapped with the next-in-line and, in
compliance with the working memory models, the value of
A(atr) is not updated. In a similar fashion, contexts can
also be added dynamically when maxatr A(atr) exceeds a
secondary threshold tadd. These tswitch and tadd thresholds
are currently implemented as static hyperparameters and must
be adjusted based on task performance similarly to learning
rate and other hyperparameters. Figure 1. provides an example
scenario of the modeled context loss over time for a domain
with two alternating contexts that need to be learned.

For some epochs, it is possible that no context is appropriate
for use in the current task (i.e. the δ values generated under
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every context exceed the threshold). While training under one
context, the manipulation of the weights may interfere with
the other contexts, resulting in an unexpected increase in
context loss. This loss may be significant enough to trigger an
unwanted context switch, or even an infinite context switch
loop if δ exceeds the threshold in all known contexts. To
combat this, sequential context switches are counted. If all
contexts are attempted but all exceed the value of tswitch, the
context with the lowest ∆C value is chosen and the value of
A(atr) is re-initialized.

3) Model & Training Regime: The switching mechanisms
above necessitate some modifications to how weight updates
are handled in the model, and so a custom Keras model
is created which we call the ContextModel. As context-
switches occur at the end of an epoch, it’s possible that the
weights may be updated multiple times depending on the batch
size. In this case, if a context-switch happens to occur, the
weights in the network would have been updated based on
an inappropriate context, conflicting with previous working
memory research. This is currently solved by maintaining a
backup of the weights at the beginning of each epoch. If a
context switch happens to occur during a training epoch, the
weights are restored to prevent learning under the incorrect
context in compliance with existing working memory models
and the epoch may be repeated under the new context.

Immediately after a context switch, the repetition of the
epoch may be desired. In supervised learning problems the
model should locate and learn under the best fitting context.
Since the context switch is decided at the end of the epoch,
all training from that epoch could potentially be reverted.
For supervised learning problems, it’s important to repeat the
epoch if a context switch occurs so the model can learn
appropriately without wasting any information. However, in
reinforcement learning settings, the repetition of epochs may
be unwanted as updates to the model are based on previous
states that were potentially evaluated under a different context.
To handle these situations, the training loop includes the
Boolean parameter, retry fit, that indicates whether an epoch
should be repeated upon a context switch.

For temporally-extended reinforcement learning tasks where
an agent is required to pass through non-terminal states (typi-
cally along the way to reaching a terminal state, such as a goal
state for the task), it is important to distinguish these steps to
ensure that the model can correctly track sequential switches in
a given episode. During these intermediate steps, the sequential
switch counter in the switching mechanisms must be retained
to allow handling dynamic context allocation and locating
best-fit contexts after all contexts have been attempted. In
temporally-extended tasks, the terminal states function as
special states in which the reward is absorbed whereas the
non-terminal states observe a discounted reward. Since this
behavior is programmed explicitly in the task, the absorb
parameter has been included in the framework’s training loop
to indicate to the model which states are terminal/non-terminal.

It is also important to provide a reliable means of initializing
the values of A(atr). During the model’s first experience

with a context, the value of A(atr) for that context is
uninitialized, and thus the switching mechanisms are inactive.
By default, the value of A(atr) for a particular context is
initialized to the value of ∆C of the first training epoch.
However, for some tasks, initializing to the first-observed ∆C
value may be inaccurate as there are other potential input
combinations/values that could produce a higher calculated
loss. To deal with these situations, the framework includes
the ability to provide user-specified initial A(atr) values, the
ability to modify the observed ∆C, or by temporarily disabling
the switching mechanisms for a number of epochs to allow the
model to first gain experience before attempting to recognize
changes in the task.

Lastly, for supervised learning problems, the framework
supports training a model over multiple different contextual
datasets uniformly. The framework trains the model for a
specified number of epochs on each of the datasets. The
complete training period over all of the provided datasets
is considered a training cycle. In addition to specifying the
number of training epochs, the number of training cycles may
also be specified, and the order of the datasets may be shuffled
at the beginning of each new cycle.

B. Experimentation & Evaluation

We evaluate this framework over a variety of tasks con-
sisting of both supervised learning and reinforcement learning
settings. These tasks serve not only to provide support for
successful learning with the framework, but also demonstrate
the overall capability and generalizability across the variety
of different tasks. While the framework supports dynamic
allocation of contexts, the evaluation presented below focuses
on static context allocation.

It is also important to note that due to the inclusion
of error-monitoring mechanisms within this framework, it
is difficult to make any fair comparisons with many other
models/frameworks. While our controls focus on varying the
number of available ATRs, we cite the controls provided by
Jovanovich and Phillips [19] as they are solving the same
types of problems described here, including the Wisconsin card
sorting test. LSTM’s were chosen as the state-of-the-art model
for one of their controls. They were able to demonstrate and
conclude that LSTM’s were unable to learn these types of
tasks. This result was not surprising as error-monitoring mech-
anisms are not present in standard deep-learning approaches
but are critical components of task-switching models in the
literature.

1) Logic Gate Task: This supervised-learning task requires
a single model to autonomously learn and predict multiple dif-
ferent logic gates without any provided contextual-information
regarding the active logic gate. The model will be presented a
training batch containing two binary inputs and the expected
output for a particular logic gate. After some time, the logic
gate will be swapped for a different gate, modifying the
model’s expected output. The model should recognize this and
switch contexts to avoid overwriting it’s prior knowledge.
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Fig. 2: The neural network model architectures for each of the tasks. Since the models were implemented using Tensorflow
Keras, layers such as Relu, Sigmoid, and Linear are implemented as dense layers with the corresponding activation function.

This experiment utilizes the neural network architecture
described in Figure 2a to model a total of eight different logic
gates. These gates are comprised of six common gates: AND,
OR, NAND, NOR, XOR, XNOR; along with two additional
custom gates that simply forward one of the given input values.
Each logic gate is separated into its own dataset containing
all possible pairs of bipolar inputs (−1 is used in-place of
0) along with the expected output value. The order of the
logic gate datasets is randomized during each training cycle,
and the active dataset is shuffled during each training epoch.
The model is trained with a batch size of 1 and updated
via stochastic gradient descent (SGD) and binary-crossentropy
loss. The hyperparameters for this experiment are described in
Table I.

TABLE I:
Logic Gate Task Training Parameters

Name Value Description
k 4 Number of training cycles
n 50 Number of training epochs per cycle
α 0.1 Learning rate for optimizer
αA 0.5 Learning rate for A(atr)
tswitch −0.02 Context-switch threshold

2) MNIST Divisibility Task: This next task aims to provide
a proof-of-concept, demonstrating the compatibility of the
framework with CNNs by classifying images from the MNIST
dataset. The MNIST dataset provides single handwritten digits
in the form of 28x28 greyscale images and comes pre-split
with 60,000 images for training and 10,000 images for testing
[20]. Given a single image, the model must recognize the digit
in the image and determine if it satisfies the current context:

even, odd, or divisible by three.
For this task, we construct a CNN integrated with a context

layer as described in Figure 2b. The model takes a single
image as input and outputs a single binary value indicating if
the given digit fits the current rule. The images in the dataset
are normalized such that each greyscale value is between 0
and 1, and the datasets/images are shuffled in the same manner
as described in the logic gate task. The model is trained on
the first 5,000 images from the training dataset and tested
against the first 1,000 images from the testing dataset using a
batch size of 32. Weight updates are applied using the Adam
optimizer and binary-crossentropy loss. The hyperparameters
are listed in Table II.

TABLE II:
MNIST Divisibility Task Training Parameters

Name Value Description
k 3 Number of training cycles
n 5 Number of training epochs/cycle
α 0.001 Learning rate for optimizer
αA 0.5 Learning rate for A(atr)
tswitch −0.003 Context-switch threshold

3) Wisconsin Card Sorting Test: The Wisconsin Card Sort-
ing Test (WCST) is a common working memory task that
requires a participant to learn and rapidly switch between
various rules dictating how to sort a presented card based
purely on correct/incorrect feedback. This task consists of a
number of rounds and trials. During a trial, the participant
is presented a stimulus card containing three features drawn
from three dimensions (number, color, shape), each dimension
having three possible feature values. For example, a card
may consist of two red circles, three green squares, one blue



triangle, etc.. The participant is then required to match the
card based strictly on a particular dimension governed at the
beginning of each round, of which they are not informed. After
several trials have been attempted, the round ends and a new
round begins with a brand new sorting rule.

This task is modeled with a 1-step Q-learning approach
using an ε-greedy policy with the architecture shown in
Figure 2c. During an episode, a random stimulus card is
generated consisting of 1 feature in each of 3 possible sorting
dimensions. The model accepts as input each of these features
as one-hot encoded vectors along with the action choice. Using
this input, the model can predict the expected reward for the
provided action given the current card and context. In this
particular implementation of the WCST, the generated stimu-
lus card is guaranteed to be free of any ambiguity that could
come from feedback. After every ntrials, a new rule is selected
at random. For models using statically-allocated ATRs, this
experiment implementation guarantees that every rule will
have been presented before a rule is ever repeated to ensure
that one rule is not learned under two different ATRs. For
models using dynamically-allocated ATRs, this constraint is
not necessary. Lastly, the employed reward schedule provides
the agent with +1 for correct sorting and −1 for incorrect
sorting. The model was trained using the SGD optimizer
and MSE loss function. The resulting hyperparameters are
described in Table III.

TABLE III:
WCST Task Training Parameters

Name Value Description
n 20 Total number of rounds
ntrials 100 Number of trials per round
ε 0.1 Probability of non-greedy action
αO 0.1 Learning rate for optimizer
αQ 1.0 Learning rate for Q-learning
αA 0.05 Learning rate for A(atr)
Ainitial 2e− 4 Initial loss value of A(atr)
tswitch −8e− 6 Context-switch threshold

4) 1D-Maze task: This final experiment is a temporally-
extended reinforcement learning task requiring an agent to
solve a 1-dimensional maze with varying goal states (posi-
tions). In this task, the agent is positioned in a random starting
state at the beginning of each episode and must traverse the
maze moving either left or right to locate the active goal
state. The environment is partially observable in that the agent
can observe its current state, but all other information is kept
hidden. The maze is also periodic such that if the agent moves
beyond one end of the maze it will land on the opposite
side of the maze. After a number of episodes, the goal state
will change positions and the agent must switch contexts to
properly accommodate the new goal. In the end, the agent
should learn the optimal path to each of the goal positions
under their own contexts.

This task is modeled with the n-step Q-learning algorithm
using the model architecture shown Figure 2d. This experiment
consists of a maze with 10 states and 3 different possible termi-
nal/goal states located at 0, 1, and 5. At the beginning of each

episode, the agent is initialized in a random non-terminal state.
The value of each action is evaluated by providing the network
with the one-hot encoded state and action pair, and selected
via an ε-greedy policy. During the episode, the agent observes
a reward of +1 upon reaching the goal state, and −1 for any
other non-terminal state. After nswitch episodes, a new goal
position is chosen at random. Like the previous experiments,
the task implementation guarantees that models with statically-
allocated contexts will experience each of the possible goals
before a goal re-occurs. Finally, the values of ∆C in this task
during early training can be unpredictable, requiring tuning of
the optional context loss initialization hyperparameters. While
modifying the initial values for A(atr) works well, for this
experiment we utilize the alternative approach of delaying
the switching mechanisms for a model’s first Adelay episodes
under a new context. Weight updates are applied using the
SGD optimizer with the MSE loss function. The finalized
hyperparameters are specified in Table IV.

TABLE IV:
1D-maze Task Training Parameters

Name Value Description
n 3000 Total number of episodes
nswitch 500 Goal switch frequency
ε 0.3 Probability of non-greedy action
αO 0.01 Learning rate for optimizer
αQ 1.0 Learning rate for Q-learning
αA 0.003 Learning rate for A(atr)
Adelay 250 New-context switch delay
tswitch −0.06 Context-switch threshold

IV. RESULTS

We first examine a benchmark of the logic gate task over
100 runs. This benchmark includes control experiments with
a multi-layer neural network (essentially a contextual network
limited to using one ATR) along with additional contextual
neural networks allocated with ATRs fewer than and exceeding
the number of actual gates for comparison. As shown in Figure
3, after 8 full training cycles, the models where the number of
allocated ATRs are fewer than the actual number of contexts
cannot fully learn the tasks. The standard neural network (1
ATR) converged on the expected theoretical 50% accuracy.
As the number of ATRs approaches the actual number of
contexts, the accuracy increases and approaches 100%. It’s
not until the number of ATRs is equal to the number of actual
contexts before the accuracy converges on 100%. After the
full 8 training cycles, all 100 models consisting of 8 ATRs or
higher were able to obtain 100% classification accuracy.

Next, the results of the MNIST divisibility task are ex-
amined. As mentioned previously, the role of this task is to
test the framework’s compatibility with CNNs, rather than
provide state-of-the-art benchmarks. Analyzing Figure 4, it
can be noted that the generated context deltas are very stable
and distinct, making task switches easily detectable. From our
experimentation, larger training datasets like MNIST provide
great stability and predictability to the generated context
deltas, making these tasks highly likely to succeed. By the end
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Fig. 3: Classification accuracy distributions for the logic gate
task across a range of statically-allocated ATRs. For each
boxplot, 100 independent models were trained, each with
random initial weights and ATRs. Each model was set to use
the corresponding number of ATRs, run for a training regime
of 8 cycles, 50 epochs each, and the average classification
accuracy across all gate functions was recorded at the end
of training. The orange line indicates the median accuracy
value across the 100 models and the notches above and below
the median represent a 95% confidence interval. Additional
hyperparameter values are specified in Table I.

of training, the model achieved an overall testing accuracy of
approximately 99.07%. With this small experiment, this result
successfully demonstrates the framework’s compatibility with
CNNs as the model is still able to achieve high classification
accuracy on never-before-seen images for three different tasks.

Moving to the reinforcement learning problems, the results
of the WCST are examined via a benchmark employing 100
different models utilizing statically-allocated contexts with the
task. Figure 5 presents the mean of the overall classification
accuracy of each model model after each trial along with
a 95% confidence interval (±1.96 standard errors). As an
alternative to the typical means of evaluating a reinforcement
learning problem, each model’s classification accuracy was
determined by applying each rule to the best-fitting context
and evaluating the action choices of all possible stimulus cards.
The accuracy of each context in each of the models was
averaged to determine that model’s overall accuracy. In the
end, 99/100 models were able to achieve an overall decision
accuracy of 100% across all tasks.

Finally, the 1D-maze task is analyzed by performing a
benchmark of 100 different models, varying the number of
available ATRs. This task also played another important role
as the working memory models mentioned earlier were more
limited when it came to temporally-extended tasks. This task
was evaluated by examining the overall accuracy in optimal
move selection for each model under each of the possible
goals as plotted in Figure 6. Of these models, 97/100 were
able to learn the optimal policy for each of the goal positions
under their own contexts. For each of the models, each goal
position in the maze is matched with the best-fitting context
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Fig. 4: The resulting context loss and context delta traces for a
single model over the training period. The top graph plots the
values of A(atr) for each context at each epoch. The bottom
graph plots the computed value of δ from each epoch. Context
switches can be identified by the δ trace falling below the
switch threshold value.
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Fig. 5: The average decision accuracy of the Wisconsin Card
Sorting Test over time across 100 different models. The shaded
area represents the 95% confidence interval. For each model,
rule is mapped to its best fitting-context where all possible
cards are evaluated. The average prediction accuracy of each
model is then averaged and plotted above.

(i.e. the context generating the least loss) and the number of
optimal moves is computed to determine the overall decision
accuracy. In the end, these results not only provide a successful
demonstration of the framework in a reinforcement learning
setting, but also show that it is also capable of performing
temporally-extended tasks.

V. CONCLUSIONS

The literature suggested that working memory is a critical
feature to our decision making process for context-switching
domains. Here we presented a new deep learning frame-
work inspired by working memory models to allow tradi-
tional neural networks to autonomously learn under a varying
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Fig. 6: The average accuracy for optimal move selection in the
1D-maze task over time for 100 different models. The shaded
area represents the 95% confidence interval. For each model,
each goal is mapped to its best-fitting context and the policy is
evaluated for its corresponding goal position by calculating the
average accuracy of optimal move selection across all possible
states.

number of contexts. The implementation of this framework
into Keras/Tensorflow allows for easy integration of context
learning into existing neural networks with minimal required
modifications to the architecture.

Along with the design of the framework, we provided four
different experiments that test and demonstrate its robustness
and compatibility across a variety of different network ar-
chitectures and problem types. Most notably the framework
showed great success when working with temporally-extended
tasks where previous models were limited, and direct com-
patibility with CNNs. Furthermore, since the few existing
models that include these contextual learning mechanisms
have been designed with reinforcement learning in mind,
to our knowledge our framework is the first that is also
compatible with supervised learning problems.

Lastly, it is worth emphasizing that the experiments were
performed with static switching thresholds. Even with these
static limitations, we were able to achieve consistent results
across all experiments. Future research into new mechanisms
to allow more dynamic thresholds could greatly benefit more
highly stochastic tasks and avoid unnecessary context switch-
ing.
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