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ABSTRACT
Human Immunode�ciency Virus has been studied for several decades,
but a consistently e�ective vaccine has not yet been produced.
While most experimental and computational work in this area has
been performed under slightly basic conditions (eg. blood/plasma),
viral transmission events often occur under highly acidic conditions
(eg. vaginal mucosa). Environmental pH can greatly a�ect protein
structure and epitope exposure to either inhibit or facilitate trans-
mission. We develop a computational pipeline for analyzing the
pH sensitivity of protein-protein interactions, and use the pipeline
to analyze the transmission-critical interaction between the HIV
gp120 and host CD4 proteins. The interaction between gp120 and
CD4 is found to be stronger at low pH for all strains tested, which
is consistent with previous work and supports the accuracy of the
introduced pipeline. Also, early transmitted founder (TF) strains
are found to generally bind CD4 better at low pH and are more pH
sensitive than systemically circulating chronic control (CC) strains.
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1 INTRODUCTION
More than thirty years after the discovery of Acquired Immune
De�ciency Syndrome (AIDS), there is still no vaccine against the
Human Immunode�ciency Virus (HIV) that causes the disease [17].
Since HIV has a very high mutation rate, antigenic regions which
are targeted by host antibodies vary greatly across HIV virions even
within a single host. Therefore, most vaccine research has focused
on inducing so-called broadly neutralizing antibodies (bnAbs). The
bnAbs are able to target regions of the virus that must be conserved
due to functional requirements [4], most of which are found on
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the gp120 extracellular subunit of the viral envelope protein (Env)
that is responsible for binding CD4 on the surface of host T-Cells to
begin infection [31]. Vaccines have been produced from Env frag-
ments that have been computationally optimized to (potentially)
invoke the production of bnAbs [11]. Results from these vaccines
have varied from successful [3] to unsuccessful [19]. A possible
explanation for this inconsistency is that the bnAbs are isolated
from the blood, which has a slightly basic pH, while HIV is often
transmitted at the mucosa, which are highly acidic. Since protein
structure and protein-protein interactions are typically a�ected by
pH, it is likely that the structure of Env and its a�nity for other
proteins, such as CD4 and bnAbs, is altered. In addition, experimen-
tal and computational studies have shown that pH impacts both
Env conformation and CD4 binding [29]. In particular, trimeric Env
proteins were found to bind CD4 better under acidic conditions,
Env surface charge was more complimentary (negative) to the host
CD4 surface (positive), and the unbound to bound conformational
change was electrostatically more preferable at mucosal pH levels.

Since HIV mutates rapidly within the host, we anticipate that
strains in a chronic infection, so called chronic control (CC) strains,
will likely have adapted to the systemic pH, and will be less e�-
cient at binding CD4 under acidic conditions when compared to
transmitted founder (TF) strains. Consequently, bnAbs produced in
chronically infected individuals might be less likely to neutralize
HIV transmission at the mucosa. Therefore, it is important to study
gp120-CD4 binding under mucosal pH because this conserved in-
teraction is an important target for vaccine production. However,
the large variation in gp120 sequence across HIV strains makes
experimental studies prohibitive, but computational modeling can
help �ll this gap in a predictive capacity.

We describe the implementation of a computational modeling
pipeline capable of quickly creating and analyzing models of un-
bound gp120 and the gp120-CD4 interaction for a large number
of Env sequences across a wide pH range. A dataset of TF and CC
pairs, spanning HIV clades B and C, is used to validate the pipeline
and explore several contingent hypotheses: 1) that the Env-CD4
interaction would be strongest at low pH, 2) that the Env protein
from TF strains would bind CD4 better under low pH compared
to CC strains, and 3) that the Env-CD4 interaction would be more
pH sensitive in TF strains. Data obtained from the pipeline is also
used to elucidate potential mechanisms responsible for di�erences
between HIV classes.
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2 BACKGROUND
2.1 HIV Variant Subclasses
In most clinical HIV infections, a single TF virion is responsible for
the transmission event [16]. TF viruses share common traits that
distinguish them from chronic control (CC) strains, and these traits
likely enhance TF virus �tness for crossing the mucosal barrier and
promoting productive initial infection [23]. Since TF virions are
often transmitted at acidic mucosa, it is expected that TF strains are
better adapted for transmission at low pH relative to CC strains.

Clades B and C are subgroups of the HIV-1 group major [30].
Clade C is the most prevalent clade of HIV globally, and is the
most common in China, India, and Africa, while clade B is most
prevalent in America and Europe [1]. Clade C is less virulent [1],
which causes a slower progression and a longer asymptomatic
period and increases opportunities for transmission [25].

2.2 Previous gp120-CD4 Electrostatic Modeling
The gp120 protein was previously modeled using several solved
gp120 fragment crystal structures [29]. Partial atomic charges and
protonation states were calculated across pH and salinity ranges
using the PDB2PQR [7] and the PROPKA3.0 [28] framework. The
APBS [2] tool was used to determine surface charge density. Similar
approaches have been used to examine protein-protein interactions
in available crystal structures [20]. The surface potentials of the CD4
protein and the CD4 binding site of gp120 were found to be comple-
mentary at low pH. Also, comparisons between bound and unbound
conformations predicted that gp120 exhibits a lower solvation en-
ergy for the bound conformation at low pH, e�ectively priming Env
for binding to CD4. Binding assays and electrophoretic measure-
ments using trimeric Env con�rmed this hypothesis, suggesting
complementary charge density modulated by environmental pH
as the primary mechanism. These calculations were facilitated by
crystal structures, so only a limited number of sequences could be
compared. Also, electrostatic contributions to the binding energy
could not be quanti�ed since CD4 is not present in most structures.

Two tools exist for extending the approach above for modeling
unsolved gp120 structures. The �rst is MODELLER: software for
homology modeling of protein structures [8, 26]. The second is FRO-
DAN: software for computationally e�cient geometric simulation
of protein structures which can adapt modeled protein structures to
target conformations while preserving stereochemical constraints
[10]. There are several solved gp120 structures, such as 1RZK [14]
and 2B4C [13], but all models have CD4, an antibody, or both bound.
The only unbound model available is 2BF1, which is the simian
immunode�ciency virus (SIV) gp120 subunit [5]. Despite HIV/SIV
sequence di�erences, 2BF1 provides a reasonable template for un-
bound structural alignments with HIV gp120 as evidenced in the
study above [29]. APBS [2] can then be used to directly calculate
the electrostatic contribution to the binding energy, ∆Ge , of the
gp120-CD4 complex across a wide pH range.

3 METHODS
3.1 gp120 Sequences
One TF sequence and one CC sequence were analyzed from each
of 24 individuals. Of these 24 pairs of sequences, 18 pairs were B

clade sequences, and 6 were C clade sequences. TF sequences were
de�ned as sequences collected within the �rst 6 months of infection,
while CC sequences were collected after this initial period. Addi-
tional sequence details including accession numbers and sequence
alignments can be found in [12].

3.2 Pipeline Con�guration and Automation
Bash 4.1.2, Python 3.4, and R 3.4.0 scripts were used to automate
the modeling and analysis of all sequences within the dataset. The
pipeline is initialized using sequences and target structures and
proceeds in the stepwise fashion desribed below.

3.2.1 Structural Modeling. The analyzed sequences do not have
solved structures, so MODELLER [26] was used with a precon-
structed set of seven template gp120 structures to produce a set
of homology models. The template structures used were 1G9M
[18], 1RZK [14], 2B4C [13], 2NY7 [32], 3JWD [22], 3JWO [22], and
3LQA [6]. Ten homology models were produced for each tested
sequence to account for natural structural variations in the �exible,
variable-loop regions. Ten models were su�cient to assess statisti-
cal signi�cance between the di�erent Env classes and sensitivity
conditions in this study. However, attempts to discriminate di�er-
ences between individual Env sequences may require an order of
magnitude or more increase in the number of models.

To determine the binding energy of the complex, the electro-
static energy of the complex and the individual components of
the complex must be determined. FRODAN is used to adjust the
core structure of the models to the three conformations (unbound,
bound, and CD4-complex) while preserving stereochemical con-
straints similar to the approach used by [24]. 2BF1 was the target
used to produce the unbound conformations. The bound and CD4-
complex conformations were produced using target 1RZK.

3.2.2 Electrostatic Binding Energy and Charge Density. Charge
and protonation data were determined for all models across a wide
range of pH using PDB2PQR 2.0.0 [7] and PROPKA 3.0 [21, 28].
The tested pH range was from 3 to 9 in increments of 0.1. PQR �les
were generated over the pH range for all model conformations.

Electrostatic energy for each structure was calculated for all of
the PQR �les using APBS 1.4 [2] to solve the full non-linear Poisson-
Boltzmann equation. For each set, the number of grid points, coarse
mesh lengths, �ne mesh lengths, and known center were calculated
using the APBS [2] psize tool. The counter ion (e.g. NaCl) concen-
tration was set to 0.155M for ions with a +1 charge and for ions
with a -1 charge. The calculations were carried out with 310K as
the system temperature. Surface potential data were saved in DX
format for each molecule within a set at whole number pH values.

Binding energies were calculated in two ways. First, the stan-
dard bound form binding energy was calculated by subtracting
the electrostatic energies of both the CD4 molecule and the bound
conformation of gp120 from the electrostatic energy of the gp120-
CD4 complex at a given pH. Second, the unbound form binding
energy was calculated by subtracting the electrostatic energies of
both the CD4 molecule and the unbound conformation of gp120
from the electrostatic energy of the gp120-CD4 complex at a given
pH. The solvation energy di�erence was found by subtracting the
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electrostatic energy of the bound gp120 conformation from the
electrostatic energy of the unbound gp120 conformation.

3.2.3 Statistical Analysis. Binding energy sensitivity was deter-
mined as the binding energy at low-pH (3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1,
4.2, 4.3, 4.4, and 4.5) subtracted from the binding energy at high-
pH (7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, and 8.0), respectively.
This produces 11 binding energy sensitivity values for each of the
10 models within each sequence. Individual sequence sensitivity
was determined by pooling the 11 sensitivities from all 10 models
within a sequence and creating a boxplot from these values. Group
sensitivity was determined by �nding the median sensitivity across
the 10 models within each sequence. The 11 median sensitivity
values for each sequence were then pooled with the sensitivity
values from all sequences within a corresponding group to produce
group sensitivity boxplots. The pH sensitivity of solvation energy
di�erences between the bound and unbound conformations was
calculated similarly, but solvation energy di�erences at the indi-
cated pH values were used in place of binding energies. Signi�cant
di�erences between median values for these and all subsequent
results were determined using the Mann-Whitney test.

Whole molecule charge density was calculated as the sum of all
charges determined by APBS divided by the total solvent accessible
surface area, which was determined using VMD [15]. The median
charge density was determined within each group at pH 4, 5, 7,
and 8. Residue-speci�c charge density was calculated as the sum
of all charges determined by APBS that were on the surface of the
residue, divided by the solvent accessible surface area of the residue.
VMD [15] was used to assign electrostatic charge coordinates to
corresponding residues and to determine the solvent accessible
surface area of each residue.

To determine pH sensitivity of whole molecule charge density,
�rst charge density di�erences were determined by subtracting the
unbound charge density from the bound charge density at each
pH value. These charge density di�erences were directly compared.
The sensitivity was calculated as this value at pH 4 subtracted from
this value at pH 7, this value at pH 5 subtracted from this value at
pH 8, or the average of these two sensitivities.

3.2.4 Sequence Alignment-Based Model Fi�ing. Next, identi�ca-
tion of sequence motifs which correlate with di�erences between
residue-speci�c surface charge density was performed. Clustal
Omega [27] was used to align all analyzed sequences. Within each
group tested, charges were assigned to alignment positions in two
ways as described in [12]. Groups were compared by subtracting
each assigned value from the corresponding value in the other
group. The top 1% of residues were identi�ed as residues that had
an absolute sensitivity di�erence larger than 1% of the absolute
sum of residue sensitivity di�erences in a given comparison.

4 RESULTS
The pH sensitivity of gp120 charge density was found to be sig-
ni�cantly more sensitive in the CC strains when compared to TF
strains (Figure 1a). Additionally, B clade strains were found to be
signi�cantly more sensitive than C clade strains (Figure 1b).

When the unbound structure was not considered, the gp120-
CD4 interaction was signi�cantly more favorable (lower binding

(a) TF vs CC (b) B vs C

Figure 1: Charge density sensitivity comparisons between (a)
TF and CC classes and (b) B and C clades. (* p < 0.05, *** p <
0.001)

energy values) for TF strains than CC strains at many pH values
between pH 4 and 6.5 (Figure 2a). However, there was no signi�cant
di�erence when comparing the pH sensitivity of this interaction
(Figure 2a inset boxplot). Considering the energy contribution of
the unbound to bound conformational change altered the shape of
the binding energy curve, this calculation suggests that CC strains
bind CD4 better at pH values between 6.5 and 8.5. However, this was
only signi�cant at pH 7.9, 8, and 8.1 (Figure 2b). The binding energy
in TF strains was found to be signi�cantly more sensitive to pH than
CC strains when considering this conformational change (Figure
2b inset boxplot). These results appear to be most representative
within the B clade (data not shown; reported in [12]).

The unbound binding energy calculation was used to compare B
and C clades within each class (Figure 3). Within the TF class, the
only signi�cant di�erence was at pH 9, though there was a general
trend of C binding CD4 better at pH values above 6.5 (Figure 3a).
There was no signi�cant di�erence in sensitivity within TF (Figure
3a inset boxplot). Within the CC class, the only signi�cant di�erence
found was at pH 3.7 (Figure 3b). However, CD4 binding was found
to be signi�cantly more pH sensitive in C clade when compared to
B clade (Figure 3b inset boxplot).

The di�erence in solvation energy between the bound and un-
bound conformations was used to determine the conformation that
was most energetically favorable at each pH. A di�erence above
zero indicates that the bound conformation is more favorable, while
a value below zero indicates that the unbound conformation is more
favorable. Within B clade, the CC class had a signi�cantly more
positive solvation energy di�erence than the TF class at many pH
values above 6, as well as pH 4.7 and 4.8 (Figure 4a). This confor-
mation preference was found to be signi�cantly more sensitive to
pH in the TF class (Figure 4a inset boxplot). Within the CC class,
there were no signi�cant di�erences in solvation energy di�erence
at any pH value between B and C clades, though there was a trend
of B clade being more positive at pH values from 5 to 8 (Figure 4b).
The conformation preference was found to be signi�cantly more
pH sensitive in C clade (Figure 4b inset boxplot).

Residue-speci�c charge density pH sensitivity was determined
and the di�erence in sensitivity between corresponding groups was
calculated as described above. The most signi�cant di�erence in
binding energy between TF and CC strains was found within B
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(a) Bound Calculation

(b) Unbound Calculation

Figure 2: Median binding energy comparison between TF
and CC strains across pH range using (a) bound calculation
and (b) unbound calculation. Signi�cantly di�erent binding
energies are identi�ed by corresponding points. Boxplots
compare pH sensitivity of binding energy between TF (left)
and CC (right). (** p < 0.01)

clade, so the residue sensitivity was compared within this clade.
Di�erences were found at residues 343 and 402. However, for 402
these di�erences only occur in a single TF and a single CC strain,
and is not representative of the groups overall (see [12]).

Residues with the largest sensitivity di�erence were also identi-
�ed by comparing B and C clades within the CC class. Only a single
residue was identi�ed (474), and it was also poorly representative
of the overall sequences as indicated by low bit scores (see [12]).

5 DISCUSSION
Though AIDS and HIV have been studied for several decades, a
viable vaccine has yet to be produced. Since the signi�cance of the
acidic pH of the typical mucosal transmission site has been broadly

(a) Within TF

(b) Within CC

Figure 3: Median binding energy comparison between B and
C clades across pH range using the unbound calculation (a)
within the TF class and (b) within the CC class. Signi�cantly
di�erent binding energies are identi�ed by corresponding
points. Boxplots compare pH sensitivity of binding energy
between B (left) and C (right). (** p < 0.01)

overlooked, we constructed a pipeline to analyze the pH sensitivity
of the gp120-CD4 interaction in TF and CC strains.

The charge density of CC strains was found to be more pH
sensitive than TF strains (Figure 1a). Also, the surface charge of B
clade sequences was signi�cantly more sensitive to pH than that
of C clade sequences (Figure 1b). While no di�erence between CC
and TF strains nor B and C clades was reported in previous work
[29], these di�erence are most likely due to the increased number
of sequences analyzed here.

Calculations using the bound conformation found TF strains to
bind CD4 signi�cantly better than CC strains at low pH (Figure
2a). At high pH values, CC was found to bind CD4 better in the
calculation using the unbound gp120 conformation (Figure 2b).
Additional analysis (data not shown, see [12]) showed that this was
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(a) TF vs CCWithin B Clade

(b) B vs C Within CC Class

Figure 4:Median solvation energy di�erence between bound
and unbound conformations across pH range compared be-
tween (a) TF and CC classes within B clade and (b) B and C
clades within the CC class. Signi�cantly di�erent binding
energies are identi�ed by corresponding points. Boxplots
compare pH sensitivity of binding energy between B (left)
and C (right). (** p < 0.01, *** p < 0.001)

found to be signi�cant within B clade while the CC class within B
clade also signi�cantly prefers the unbound conformation at both
high and low (but not intermediate) pH. These results suggest that
the increased CD4 binding at low pH in TF strains is not due to
increased pressure to assume the bound conformation, but is more
likely due to a more favorable interaction between gp120 and CD4.
Conversely, the increased binding ability of CC strains at higher
pH values appears to be in�uenced by an increased preference to
assume the bound conformation.

Using the unbound calculation, there was a trend within class TF
in which C clade bound CD4 better at pH values above 6.5 (Figure
3a). Additional analysis (see [12]) revealed that B clade preferred
the unbound conformation over C clade from pH 5 to 7 within

the overall group and within the CC class, but C clade prefers the
unbound conformation within class TF from pH 6 to 8. The trend
within class TF suggests that C clade may bind better at higher
pH due to a preference for the bound conformation. However, this
is based upon an observed trend, so a larger number of C clade
samples would be needed to evaluate its signi�cance. Regardless,
across all binding energy calculations, gp120 bound CD4 better at
low pH, consistent with previous experimental results [29].

When calculating sensitivity with the bound gp120 conforma-
tions, no signi�cant di�erences could be found between TF and CC
(Figure 2). However, when using the unbound conformation for the
calculation, the TF gp120-CD4 interaction was signi�cantly more
sensitive to pH (Figure 2b), particularly within B clade [12]. This
was consistent with previous experimental results [29]. Addition-
ally, the preference for the bound conformation was signi�cantly
more pH sensitive for TF strains within the B clade (Figure 4a). This
suggests that the increased binding energy pH sensitivity of the
TF strains within B clade is due to the e�ect of pH on the gp120
conformation, and that modeling of the unbound conformation was
integral to these results.

Within the CC class, CD4 binding was found to be signi�cantly
more sensitive in C clade when using the unbound conformation
(Figure 3b). Also within CC, the preference for the bound conforma-
tion was found to be signi�cantly more sensitive in C clade (Figure
4b). These results suggest that within the CC class, pH a�ects CD4
binding through the conformational shift in C clade.

E�orts to understand a mechanism of binding sensitivity identi-
�ed a few residues that may contribute to the observed di�erences
(see results and additional data reported in [12]). Unfortunately, se-
quence comparisons did not indicate any clear sequence di�erence
that could contribute to the observed sensitivity di�erences.

Overall, this work shows the importance of the pH sensitivity
mechanism and its potential role in the gp120-CD4 interaction.
Several subclass-speci�c mechanisms were identi�ed using the
pipeline even though residue-speci�c pH sensitivity provided no
additional insights. This is particularly important for HIV vaccine
research because the CD4 binding site is an important vaccine
target, and pH has been shown to a�ect antibody binding at the
mucosa [9]. Additionally, bnAbs typically target the CD4 binding
site of gp120 [31]. Investigations into the pH sensitivity of gp120-
bnAb interactions using the pipeline are currently ongoing.

Additionally, this work shows the e�ectiveness of the proposed
pipeline for analyzing pH sensitivity for protein-protein interac-
tions. The pipeline builds upon previous approaches for computing
electrostatic potential across a range of environmental conditions
[20, 29] by integrating high-throughput structural modeling, confor-
mational search, and targeted docking for a large set of sequences
[8, 10, 24]. Computed gp120-CD4 binding energy sensitivities were
also consistent with previous work [29].
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