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ABSTRACT

Validation of Computational Approaches for Studying Disordered and Unfolded

Protein Dynamics Using Polymer Models

by

Joshua Lee Phillips

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Merced, 2012

Professor Shawn Newsam, Chair

The “protein structure-function” paradigm, which states that proteins adopt nearly rigid

3-dimensional structures that are responsible for their function, is one of the central

tenets of molecular biology, yet some proteins and protein domains exist as intrinsi-

cally disordered forms. In this dissertation, new approaches to define a metric for the

dynamics of disordered proteins are developed which are also readily applicable to the

study of non-equilibrium globular protein dynamics. First, standard metrics for com-

paring protein dynamics are applied to molecular dynamics (MD) simulations of a class

of entirely disordered proteins (outside of a small anchoring domain) involved in nu-

cleocytoplasmic transport, the FG-nucleoporins (FG-Nups). After this, clustering and

dimensionality reduction techniques are utilized to reveal previously unknown charac-

teristics regarding the convergence properties of disordered protein simulations. Next,

the novel application of polymer models is used to assess the efficacy of clustering and

dimensionality estimation algorithms applied to MD trajectories. Finally, the results are

xv



used to analyze the differences between FG-Nup dynamics and the dynamics of two

fast-folding globular proteins, GB1 and Trp-cage. The results indicate that polymer

models are an effective tool for validating computational techniques for studying pro-

tein simulations, and that the various proteins can be classified by differences in their

underlying dynamics.
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Chapter 1

Introduction

Continuing improvements in algorithms and computer speeds promise that an

increasing number of biomolecular phenomena can be simulated by molecular dynam-

ics (MD) to produce accurate “trajectories” of their molecular motions on the nanosec-

ond to microsecond time scale. An important target for such simulations will be non-

equilibrium biochemical processes, such as protein folding, but existing tools for ana-

lyzing molecular dynamics trajectories are not well suited to non-equilibrium processes.

Progress will therefore require improvements in tools for classifying the range and types

of dynamics exhibited by these systems. An extreme example of a non-equilibrium bio-

chemical process is the function of “intrinsically disordered” proteins (IDPs) – proteins

that function without ever folding into a unique structure. There is now growing evi-

dence that some proteins and protein domains exist as “unstructured” or “intrinsically

disordered” forms [1]. Indeed, it has been estimated that up to 50% of eukaryotic pro-

teins have at least one region (>50 residues) that is disordered [2] for at least short

periods of time. It is clear that the operating principles will be fundamentally different

for unstructured protein regions than for folded protein domains, and there is currently

very little knowledge of the biophysics of such regions, with many fundamental ques-

tions unanswered.

Traditionally, the structure and function of IDPs is often described in contrast to

1
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“natively folded” proteins (NFPs) which adopt rigid 3-dimensional structures that are

responsible for their function. Instead, it is believed that IDPs are best characterized by

their dynamics. Computational simulations must play a central role in studying intrin-

sically disordered proteins because there is no experimental technique that can directly

sample protein structure on the time scale relevant to conformational changes in such

regions and therefore experiment provides only indirect information on the unstructured

state [3].

Molecular dynamics simulation is a powerful technique for sampling the con-

formation space of proteins and other biomolecules. All-atom models provide a wealth

of structural information at a level of physical detail that is inaccessible to many exper-

imental techniques and can be used to make theoretical predictions for future experi-

mental validation. MD simulation is particularly well-suited for studying the local min-

ima in the free energy landscape (metastable states) and the transitions between these

minima (transition states) which characterize how biomolecules perform their requi-

site functions. These and other dynamical properties can in principle be obtained from

the conformational ensembles from MD simulation trajectories; however, calculating

them has proven to be a challenge in practice. Nevertheless, there is good reason to

believe that we are at the threshold of being able to perform predicatively accurate

MD simulations on systems of biologically meaningful sizes (millions of atoms) and

timescales (milliseconds-seconds) and therefore new analysis tools are needed to char-

acterize the dynamical properties of biomolecules from MD simulations. The main

focus of this work is to demonstrate the use of machine learning, polymer-based mod-

els, and other computational techniques to analyze the data produced from simulations

of several forms IDPs and unfolded NFPs. These methods provide direct, quantitative

measures of the dynamics of these proteins extracted from molecular dynamics trajec-

tories and allow IDPs and NFPs to be classified and compared based on their “degree of

disorder”.

The application of machine learning and data mining techniques to MD trajec-

tories has provided useful tools for studying biomolecular processes, but the very high
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dimensionality of the space of molecular structures (up to three times the number of

atoms) means that research is needed to determine the appropriate methods. In the

chapters that follow, several techniques which possess amenable properties for study-

ing MD trajectories are explored and evaluated. In addition, simple polymer models

with well-defined statistical properties will be used to both develop and evaluate the ap-

proaches taken. The fusion of these computational methods with polymer theory models

provides unique, synergistic insights into both the dynamics of the proteins studied and

the validity of the computational methods themselves.



Chapter 2

Quantifying Structural Change in

Molecular Dynamics Simulations of

Intrinsically Disordered Proteins

In this chapter, several techniques for exploring protein flexibility and structural

heterogeneity are described. Many of these approaches are adapted from standard met-

rics for studying NFPs. Some of these approaches are novel, and others are found in the

relevant literature on IDPs and denatured NFPs. The methods can be loosely grouped

into two categories, static methods and dynamic methods, which will be described in

more detail later in this chapter. These methods are applied to MD simulations of a

class of entirely disordered proteins (outside of a small anchoring domain) involved in

nucleocytoplasmic transport, the FG-nucleoporins (FG-Nups) in order to illustrate their

relative strengths and limitations for studying non-equilibrium processes.

2.1 Background

Proteins consist of a set of monomeric units called amino acids (AAs) or residues,

that are connected together by amide bonds in order to form a polymer chain. There are

4
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roughly 20 different amino acids, each with unique chemical properties, that can be used

to create proteins (the exact number differs slightly across various living organisms).

The exact combination and ordering of amino acids that make up a protein is denoted as

a protein’s primary structure. Since many amino acids have a strong propensity for in-

teracting with other amino acids, the primary structure of a protein might encourage the

protein chain to form additional structural motifs beyond the simple polymer structure

dictated by the amide bonds.

For NFPs, certain local structural motifs are quite common, such as the α-helix

or β-sheet, and are referred to as forms of secondary structure. These two structural

motifs are exemplified in Figure 2.1. Additionally, entire secondary structure elements

can interact in specific ways due to their constituent amino acids such that they form

tertiary structure, or even interact with other proteins to form quaternary structure. The

process of forming such structures is called folding, and although some proteins require

assistance from other proteins to fold, many proteins are known to be able to fold inde-

pendently. Therefore the information about the folding pathway(s) and final structure is

encoded in a proteins’s primary structure. The final folded state is of great biological

significance because it directly dictates or modulates how the protein interacts with other

biomolecules in order to achieve some biologically significant effect. The folded struc-

ture is called the native state of the protein. It can often be determined experimentally,

and serves as the “reference state” for many theoretical and computational methods for

studying proteins.

IDPs function under a different structural model, without spontaneously adopt-

ing the structural motifs mentioned above, and often interact with other biomolecules

in very different ways from their NFP counterparts. If any detailed structural or in-

teractionary patterns among IDPs exist, they are often currently considered beyond the

scope of modern experimental techniques. Nevertheless, some patterns are starting to

emerge among various classes of IDPs. For example, certain IDPs are known to adopt

secondary structure upon binding with partner biomolecules [5]. The prevailing flexi-

bility afforded by intrinsic disorder is thought to allow IDPs to easily search for binding
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helixα

sheetβ

Figure 2.1: Examples of Common Protein Secondary Structures. Left: Folded structure
of the Trp-cage mini-protein (RCSB Protein Data Bank ID: 1L2Y) with labeled α-helix
secondary structure motif. Right: Folded structure of the GB1 beta-hairpin (RCSB
Protein Data Bank ID: 1GB1) with labeled β-sheet secondary structure motif. Images
generated using Visual Molecular Dynamics software version 1.9 [4].

partners through a process known as “fly-casting” [6, 7]. More towards the same ex-

treme, some IDPs show gross structural arrangement based on their sequence properties

with only short, targeted sequence elements playing the key role in the interaction [8].

Additionally, some research has indicated that some IDPs are characterized by transient

secondary structure, which is thought to play the primary role in binding interactions [9].

Across all of these studies, simulation has played a critical role in elucidating these prop-

erties of IDPs.

Classical molecular dynamics simulations of biomolecular structures provide a

wealth of information on the structure and behavior of biomolecules at the atomic level.

The overall approach of molecular dynamics simulation is characterized by the use of

classical mechanical laws of motion to model the physical motions of the biomolecules

of interest. Complete models of proteins and other biomolecules have been created,

and are available in modern simulation software packages which numerically integrate

the equations of motions associated with these systems. While the simulation pack-
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ages have been heavily optimized and designed to run on distributed parallel processing

environments, the spatial/temporal scale of modern simulation is often still small/short

compared to the spatial/temporal range needed to capture many interesting biomolecular

phenomena. Also, the data produced by simulations that reach useful spatial/time-scales

is large and cumbersome to analyze. Therefore, well-validated and efficient methods for

analyzing the results of these simulations are of critical importance.

2.2 Methods

2.2.1 Molecular Dynamics Simulations

The model protein domains for this work were the phenylalanine-glycine nucleo-

porins (FG-Nups)–intrinsically disordered proteins that fill the core of the Nuclear Pore

Complex (NPC). The NPC facilitates selective transport of 5-40 nanometer diameter

molecular “cargo” between the cytoplasm and nucleus only if the cargo carries a spe-

cific transport signal [10]. The FG-Nups are believed to form an impermeable gel-like

mesh that fills the NPC core and undergoes an as-yet-unknown change when it binds

to a cargo possessing a transport signal. The FG-Nups are characterized by different

4-amino acid motifs that are repeated throughout the proteins.

Classical molecular dynamics simulations were performed on six different pro-

tein sequences. Two of these sequences were derived from the 823 amino acid-long yeast

wildtype FG-nucleoporin NSP1 (NCBI Assession Number: NP 012494.1, Gene ID:

6322420). This protein is rich in amino acid repeats of the form “FxFG” (F=phenylalanine,

G=glycine, x=variable amino acid), and, in general, contains a high number of positively

charged K residues (K=lysine). A 105 amino acid-long subsequence of the full-length

NSP1 protein (AAs 375-479), referred to as FxFG was used, as well as a mutant ob-

tained from changing all of the F residues in the sequence into A (A=alanine) residues,

referred to as AxAG, and a mutant obtained from chaining all of the F residues in the

sequence into S (S=serine) resides, referred to as SxSG. Phenylalanine is highly hy-
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drophobic and avoids interaction with the surrounding solvent when possible, favoring

interactions with other hydrophobic groups in the protein. In FxFG, they are thought

to play a key role in driving this protein to be somewhat compact in spite of the rel-

atively large number of positively charged amino acids in the rest of the sequence,

which favor interactions with the surrounding solvent. Alanine, and to a greater ex-

tent serine, are less hydrophobic, making the mutants more likely to adopt extended

conformations. The remaining three sequences were derived from the 1113 amino acid-

long yeast wildtype FG-nucleoporin NUP116 (NCBI Assession Number: NP 013762.1,

Gene ID: 6323691). This protein is rich in amino acid repeats of the form “GLFG”,

and, in general, contains a low number of charged amino acids. A 120 amino acid-

long subsequence of the full-length NUP116 protein (AAs 346-457 plus a short tag),

referred to as GLFG was used, as well as two mutants obtained from changing all of the

F residues to A residues (GLAG) or all L (L=leucine) residues to A residues (GAFG).

Because GLFG contains only a few charged residues, phenylalanine is thought to play a

minor role in keeping these proteins compact, so GLAG should be marginally more ex-

tended than GLFG, while GAFG should remain largely unaffected since leucine and ala-

nine have relatively similar chemical properties. The complete sequences are listed be-

low (D=aspartate, E=glutamate, I=isoleucine, M=methionine, N=asparagine, P=proline,

Q=glutamine, R=arginine, T=threonine, V=valine, W=tryptophan, and Y=tyrosine).

• FxFG

SKPAFSFGAK PDENKASATS KPAFSFGAKP EEKKDDNSSK

PAFSFGAKSN EDKQDGTAKP AFSFGAKPAE KNNNETSKPA

FSFGAKSDEK KDGDASKPAF SFGAK

• AxAG

SKPAASAGAK PDENKASATS KPAASAGAKP EEKKDDNSSK

PAASAGAKSN EDKQDGTAKP AASAGAKPAE KNNNETSKPA

ASAGAKSDEK KDGDASKPAA SAGAK
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• SxSG

SKPASSSGAK PDENKASATS KPASSSGAKP EEKKDDNSSK

PASSSGAKSN EDKQDGTAKP ASSSGAKPAE KNNNETSKPA

SSSGAKSDEK KDGDASKPAS SSGAK

• GLFG

GSRRASVGSG ALFGAKPASG GLFGQSAGSK AFGMNTNPTG

TTGGLFGQTN QQQSGGGLFG QQQNSNAGGL FGQNNQSQNQ

SGLFGQQNSS NAFGQPQQQG GLFGSKPAGG LFGQQQGASY

• GLAG

GSRRASVGSG ALAGAKPASG GLAGQSAGSK AAGMNTNPTG

TTGGLAGQTN QQQSGGGLAG QQQNSNAGGL AGQNNQSQNQ

SGLAGQQNSS NAAGQPQQQG GLAGSKPAGG LAGQQQGASY

• GAFG

GSRRASVGSG AAFGAKPASG GAFGQSAGSK AFGMNTNPTG

TTGGAFGQTN QQQSGGGAFG QQQNSNAGGA FGQNNQSQNQ

SGAFGQQNSS NAFGQPQQQG GAFGSKPAGG AFGQQQGASY

These disordered proteins span a wide range of sizes as measured by experimen-

tal sieving column size-exclusion and solution NMR [8] and are predicted to cover three

distinct classes of disordered proteins: GLFG is classified as a collapsed coil, FxFG is

classified as an intermediate relaxed coil, and SxSG is classified as an extended coil.

The balance between hydrophobic interactions (primarily from the F residues in the

FG-Nups examined here) and overall percent of charged content of the proteins is hy-

pothesized to be the driving force for collapsing/extending in these domains [1]. These
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classifications also predict that the extended coils should exhibit less frustrated dynam-

ics, with fewer, more shallow minima in the free-energy surface. Likewise, we predict

that the collapsed coils should exhibit more frustrated dynamics, with many more, shal-

low minima.

A total of 40 independent replicate simulations of 5ns classical MD at 300K

were performed for each protein using the AMBER software suite [11] and a General-

ized Born/Surface Area implicit solvent model, using standard protocols and parameter

sets. Fully-extended structures for the simulations were prepared using the AMBER

program tleap, with ACE and NME caps on the C and N termini, and subsequently min-

imized using 10000 steps of steepest descent. Each simulation was then started from

the minimized structures using a unique set of random initial velocities. In each MD

simulation, structures were saved every 1 picosecond for the final 3ns of simulation, to

yield 3000 structures from each of the 40 replicate simulations. Also, 5 of these repli-

cates from each FG-Nup were extended for an additional 15ns to yield 18000 structures

for each of the replicates in order to contrast the results of running many, shorter MD

simulations with the results of running fewer, longer MD simulations. An additional 40

independent 2ns simulations for each of the proteins at 350K were also performed using

the same protocol to study the effects of high temperature on these IDPs.

2.2.2 Protein Structure Comparison

Computational techniques for studying the conformational heterogeneity of pro-

teins rely heavily on structure comparison metrics. These metrics define the way in

which two protein conformations are seen as being similar or dissimilar to one-another.

Numerous quantitative techniques exist for computing such distances. While the first of

the methods covered below is the most popular in use today, it is not necessarily the best

choice in general, and development of better metrics for protein structure comparison

remains an active field of research.



11

Root-Mean-Squared Distance

The most popular distance metric for protein comparisons is the root-mean-

squared distance (RMSD). For two protein conformations, P and Q, RMSD defines

the distance between two structures to be the minimum of the root-mean-squared inter-

atomic distances over all possible rotations and translations of RQ:

RMSD(P ,Q) = min
RQ


√√√√ 1

N

N∑
i=1

‖rPi − rQi ‖
2

 (2.1)

where N is the number of corresponding residues in structures P and Q, RQ is the

N × 3 matrix of alpha-carbon (Cα) atom positions for conformation Q, and rPi is the

three-dimensional position vector of the ith alpha-carbon atom in conformation P .

Each amino acid contains exactly one Cα atom, which is centrally located be-

tween the amide nitrogen (N) and carbonyl carbon (C) atoms. The amide nitrogen from

one amino acid is bonded to the carbonyl carbon of another amino acid to form a pro-

tein chain, so all of these atoms together are referred to as the protein backbone. The

set of atoms which give each amino acid its unique chemical properties, known as the

sidechain, is bonded to the Cα atom as well, but this set differs across amino acids.

Hence, the Cα atom is a reasonable atom to choose to represent the overall location of

each amino acid. However, a mass-weighted version of RMSD may also be computed

if additional atoms (like all backbone or sidechain atoms) are required for more precise

calculations. Also, common procedures used to optimize the fit between the two confor-

mations often minimize a different objective function than the one specified above. For

example, in practice, the constraint to minimize across all translations is often relaxed

by simply mass-centering the two-conformations, and solving for the optimal rotation

around the origin, which also results in a symmetric, consistent solution for all pairs of

conformations.

RMSD is very effective for discriminating between conformations which are

fairly similar to one-another, but often performs somewhat unpredictably for fairly dis-



12

similar conformations. This problem is caused by the rather naive rigid rotation and

translation requirements of the algorithm. For example, if an NFP is undergoing the pro-

cess of folding, a conformation where half of the protein is completely folded while the

other half is completely unfolded may appear just as similar to the final folded structure

as a conformation which is tightly collapsed, but lacking relevant secondary structure. In

other words, RMSD considers the position of each atom to be of equal importance even

though it makes intuitive sense that atoms in the conformation which match closely with

the folded structure should not be penalized by the arguably more arbitrary arrangement

of the rest of atoms in the conformation. Another example where RMSD is somewhat

ineffective considers a protein with two rigid, folded domains separated by a short, flex-

ible linker. The two domains can move rather independently, so that two conformations

could be considered more dissimilar than conformations where the domains are still the

same relative positions, but one domain is halfway unfolded. Again, it makes intuitive

sense that the independent motion of the two domains should not be penalized equally

to motions where one of the domains has become unfolded.

Intramolecular Distance Deviation

Another popular metric for comparing protein structures is the intramolecular

distance deviation (IDD). For two protein conformations, P and Q, IDD is defined as:

IDD(P ,Q) =

√√√√ 1

N2

N∑
i=1

N∑
j=1

(‖rPi − rPj ‖ − ‖rQi − rQj ‖)
2 (2.2)

where N is the number corresponding residues in structures P and Q, RQ is the N ×

3 matrix of Cα atom positions for conformation Q, and rPi is the three-dimensional

position vector of the ith alpha-carbon atom in conformation P .

IDD has two advantages over RMSD: no optimization procedure is required,

and the calculation is rotationally and translationally invariant. Similar to RMSD, the

IDD approach also ensures that the result is consistent and symmetric for any pair of
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conformations. IDD still faces the same difficulties as RMSD when comparing highly

dissimilar structures, and has one additional property that can be problematic in specific

cases: it cannot discriminate between mirrored conformations. All amino acids except

glycine can exist in one of two possible forms known as optical isomers. This is not

commonly a problem when comparing protein structures because, in nature, organisms

typically only utilize one of these isometric forms, making any proteins formed from the

other isometric form biochemically incompatible. However, for more general polymer

models, both forms are often equally likely, and IDD cannot discriminate between them.

Φ-Ψ Angles

While the three dimensional coordinates of protein atoms form an intuitive space

for performing conformer comparisons, certain internal coordinates are also commonly

employed. One common set of internal coordinates are the backbone Φ-Ψ angles. These

angles are determined by computing the dihedral angles formed by the positions of four

consecutive atoms along the protein backbone. Figure 2.2 shows a short segment of a

protein backbone, with the three constituent dihedral angles (Φ,Ψ,Ω) labeled accord-

ingly. The dihedral angle is obtained by calculating the dot product between the vector

normal to the plane formed by the first three atoms and the vector normal to the plane

formed by the last three atoms in this quartet. This is a practical and effective way to

internally parametrize protein conformations because the bond lengths between pairs of

atoms and the bond angles formed by any three consecutive atoms along the backbone

are relatively fixed, fluctuating only by very small amounts. Thus, the three-dimensional

coordinates of the protein backbone can be effectively reconstructed given just the set

of dihedral angles along the backbone of a protein conformation. In addition to this, the

peptide bond dihedral angle Ω, formed by the atoms Cα-C-N-Cα, is extremely rigid and

fixed at 180 degrees for most residues. (Although it can also take on a value of 0 in rare

cases, it is often not modeled in this manner in most molecular dynamics simulations.)

Therefore, only the two remaining combinations of atoms may be used to form what are
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called the Φ and Ψ angles: C-N-Cα-C and Nα-Cα-C-N, respectively. This means that a

protein conformation can be effectively internally parametrized using the vector of Φ-Ψ

angles of length 2 ∗N − 2, where N is the number of residues in the protein.

There are two typical methods of employing the Φ-Ψ angles for computing dis-

similarity metrics for conformations. The first is the Euclidean distance between the

sin-cos transform of the Φ-Ψ angles [12]. Since the angles can range from (−π, π],

they must be projected onto the unit circle by taking the sin and cos of each angle.

This results in a 4 ∗ N − 4 dimensional vector of transformed coordinates where sim-

ple Euclidean distance between two vectors can be applied to compute dissimilarity.

The second metric is the dot product between the inverse Discrete Fourier Transform of

the complex-conjugate forms of the Φ-Ψ angles. In this approach, a vector of complex

values, c is constructed:

c1 = 1 + 0i

cx+1 = eiθx

c2M+1−x = e−iθx , ∀x = 1 . . .M

(2.3)

where M = 2N − 2, which is the total number of elements in the vector of all Φ-Ψ

angles, and θ is the vector of all Φ-Ψ angles. By construction, taking the normalized

inverse DFT of c results in a 4 ∗N − 3 dimensional vector of real numbers that lies on

the unit hypersphere. The dot product between the transformed vectors can then be used

a as metric of dissimilarity between conformations [13].

Both of the above methods for calculating dissimilarity using Φ-Ψ angles have

the advantage of using a rotationally and translationally invariant parametrization of

conformational structure, just like IDD. However, unlike IDD, these methods are able

to discriminate between isometric forms of the polymer chains. In addition to this ad-

vantage, the problems with RMSD and IDD mentioned above involving rigid domains

are largely overcome. This advantage is limited somewhat because a chain where every

other angle along the backbone matches well is the same as a chain where the first half
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Figure 2.2: Pictorial description of the three rotational degrees of freedom cap-
tured by the dihedral angles (Φ,Ψ,Ω) along a protein backbone. Image courtesy of
Wikimedia Commons user Dcrjsr (Jane S. Richardson, Professor, Duke University)
on the web at http://upload.wikimedia.org/wikipedia/commons/c/c0/Protein backbone
PhiPsiOmega drawing.jpg according to the Creative Commons Attribution 3.0 Un-
ported license (http://creativecommons.org/licenses/by/3.0/deed.en).

http://upload.wikimedia.org/wikipedia/commons/c/c0/Protein_backbone_PhiPsiOmega_drawing.jpg
http://upload.wikimedia.org/wikipedia/commons/c/c0/Protein_backbone_PhiPsiOmega_drawing.jpg
http://creativecommons.org/licenses/by/3.0/deed.en


16

of the chain matches well, but the second half does not. So, some additional weight-

ing would be needed to lower the dissimilarity for the intuitively preferred latter case.

Because the Φ-Ψ angle space has advantages over the IDD approach and mitigates the

same problems, IDD isn’t utilized in any analyses presented here.

MAMMOTH

Another technique for conformation comparison developed recently by Ortiz et

al. is MAMMOTH [14]. Generally speaking, this technique aims to fix the structural

domain issue faced by RMSD and IDD by breaking the protein into substructures of

seven contiguous residues. These substructures are classified based on the internal co-

ordinates system of Cα-Cα virtual bond vectors, and then dynamic programming is

used to determine a global alignment using the local substructure similarities and an

additional penalty term for internal gaps. Finally, the maximum subset of similar sub-

structures within 4 angstroms of each another is found and used to compute a percentage

of structural identity index and corresponding z-score assuming a null model based on

random structural alignment. While it is not clear that MAMMOTH would necessarily

overcome the limitations often found when seeking a single global structural alignment,

it calculates information about local structural features, like secondary structures, which

are then leveraged to calculate the similarity z-score.

2.2.3 Static Methods for Analyzing Disordered Proteins

Radius of Gyration (Rg) and Shape (S) Parameters

A commonly employed metric for quantifying the size of a single protein con-

formation is the radius of gyration, Rg. This descriptor quantifies the general size of the

conformation, allowing easy comparison between conformations. It can be computed
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from the eigenvalues of the gyration tensor, T:

T =
1

N

N∑
i=1

(r̄− ri)(ri − r̄)> (2.4)

where N is the number of Cα atoms in the protein, ri is the position vector of the ith Cα

atom, and r̄ is the position vector the center of mass of the Cα atoms. Let λ1,2,3 denote

the eigenvalues of T, then Rg can be computed as follows:

Rg =
√
λ1 + λ2 + λ3 (2.5)

Another metric is the shape parameter S, which provides an indication of the

general shape of the conformation and can also be derived from the eigenvalues of the

gyration tensor:

S = 27

( ∏3
i=1 (λi − λ̄)

(λ1 + λ2 + λ3)
3

)
(2.6)

where λ̄ is the mean of the three eigenvalues of the gyration tensor. The shape parameter

falls within the range [−0.25, 2] where a value of S = 0 indicates a perfectly spherical

conformation, S < 0 indicates an oblate, or flattened, conformation, and S > 0 indi-

cates a prolate, or extended, conformation. Therefore, while the radius of gyration may

be interpreted as a measure of the size of a sphere that would circumscribe the con-

formation, the shape parameter describes the shape of a circumscribing ellipsoid [15].

Several example protein conformations and their calculated Rg and S values are shown

on the left-hand side of Figure 2.3 and some examples of the three classes of ellipsoids

captured by the S parameter are shown on the right-hand side.

Secondary Structure

Secondary structures for the proteins were examined using the program DSSP [16].

This program takes a single conformation, and assigns each residue to a secondary struc-

ture class based on its geometry and locality in relation to other residues. While the two
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Figure 2.3: Examples of various intrinsically disordered protein structures and their
corresponding radii of gyration (Rg) and shape parameters (S) are shown on the left,
emphasizing the continuum of compaction and internal arrangement that disordered
proteins exhibit. On the right are examples of the three different classes of ellipsoidal
structure captured by the shape parameter, S.
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primary types of secondary structure are α-helices and β-sheets, DSSP can classify

residues into many additional structural motifs. For example, two additional kinds of

helical structures that it can classify are the Π-helix and 3-10-helix. There is also the

“turn” class assigned to residues that are similar to one of the helical structures, but that

don’t make the necessary contacts with other residues to be classified as one of the three

types of helices. Besides the β-sheet, there is also a similar class called the β-bridge,

as well as a “bend” class for β-like structures that don’t make the necessary contacts

with other residues, analogous to the “turn” class for helices. Finally, the program will

classify any residue which doesn’t fall into any of the above categories as a “coil”. Dis-

ordered proteins exhibit only transient secondary structural arrangement, so examining

the fraction of the time that these structures are observed during the simulations provides

additional details about the internal arrangement of the protein chains.

Interresidue Distance Maps

A commonly employed method for extracting structural information from pro-

tein simulations involves measuring the distances between all pairs of residues along

the protein chain. Often, these distances are converted into a set of “contacts” where

only residues within a small specified distance (ε) are said to be in contact with one an-

other. Using this formalism along with an ensemble of protein structures generated from

molecular dynamics simulations, this binary contact information can be used to extract

the probability with which any pair of residues are in close proximity. By creating an

image where each pixel pij corresponds to a pair of residues along the chain, namely

residue i and residue j, and setting the intensity value of this pixel to be proportional

to the probability of residues i and j being in contact (p(Rij <= ε)), the structural

properties of the protein can be quantified in a succinct manner that also lends itself to

visualization. This method has been employed extensively for studying the structure of

natively folded proteins.

While contact maps are routinely applied to the study of natively folded proteins,
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their usefulness in studying disordered proteins is diminished. For a folded protein,

certain residues will tend to stay in contact over a persistent period of time, which can

be observed visually by the strong intensity values in the protein’s contact map. In

contrast, IDPs do not show persistent local arrangement. Instead, pairs of residues will

often be in contact for only short periods of time, or the protein may adopt many different

global arrangements over extended periods of time. In order to quantify and examine the

structural variation of IDPs, a novel, generalized version of contact maps is developed

here called interresidue distance maps.

Distance maps set each pixel, pij , to a color-mapped value of the average Eu-

clidean distance between residues i and j: 〈Rij〉. This would result in a distance map

image that is mirrored across the diagonal. However, information about the variation

in 〈Rij〉 is also included by placing the standard deviation of Rij in the upper triangle

of the distance map, and keeping the average values in the lower triangle. Therefore,

distance maps contain not only more detailed information about the distances between

residues than standard contact maps, but also information about the distribution around

these averages. An example of how to construct an interresidue distance map is shown

in Figure 2.4.

Rg–S Histograms

Another recent technique for studying the dynamic structure of IDPs is examin-

ing the joint distribution of Rg and S for a conformational ensemble [17]. This can be

accomplished by generating a two-dimensional histogram where each bin corresponds

to a unique range ofRg and S values. While distance maps provide some insight into the

average structural arrangement of IDPs and fluctuations around this average structure,

Rg–S histograms lend themselves to interpretation of structural dynamics by resolving

the distribution of these conformational structures.
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Figure 2.4: Example of distance map construction. The distance between residue i and
residue j is denoted as Rij . This values is computed for each structure in an ensemble,
the values are averaged (〈Rij〉), and the result is reported as a color-coded picture in
the corresponding location on the lower diagonal of the distance map. The standard
deviation is also calculated, σ(Rij) and plotted in the corresponding location in the
upper diagonal as well.

2.2.4 Dynamic Methods for Analyzing Disordered Proteins

Distance from Previous Structures

A measure of dynamic change in protein conformation is revealed by plotting the

structural dissimilarity between the initial and current structures versus time. The results

of multiple simulations can be averaged to both visually and quantitatively confirm the

rate of change. However, the measure of dissimilarity used may have a significant im-

pact on both the consistency and reliability of the results. Typically, RMSD is employed

to assess structural dissimilarity, but this method often performs poorly for very dissimi-

lar structures. Therefore, two additional techniques for assessing structural dissimilarity

are also employed here: MAMMOTH [14] and backbone Φ-Ψ angle distances [12].

MAMMOTH is calibrated to include secondary structure information, but still relies

heavily on structural alignment similar to RMSD and produces a z-score instead of

a geometry-based distance. The backbone angle distance measure is rotationally and
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translationally invariant, but is not as commonly used or intuitive as alignment-based

techniques.

Instead of measuring the structural dissimilarity between structures in the simu-

lation from the initial structure, one may also desire to look at the structural dissimilarity

at a specific time interval in the past. In this case, every structure at time t is compared

to the structure at time t−∆t where ∆t is the time-scale of interest. Therefore, plotting

these values as a function of time for several values of ∆t can potentially uncover cer-

tain conformational changes that might not be observed when simply comparing to the

initial structure only.

Backbone Angle Autocorrelation

Autocorrelation functions are a well-established method for estimating the dy-

namic change in some measurable quantity. For proteins, the calculation of autocorrela-

tion functions using the backbone Φ-Ψ angles has intuitive appeal. The autocorrelation

for each angle can be computed independently, but this approach would not take inter-

actions between the various residues into consideration. Therefore, a vector containing

information from all Φ-Ψ angles can be constructed using the conjugate-complex form

of the angles. If there are a total of n angles in the protein of interest, then denote θ

to be the n-element long vector of these angles. Then, construct the 2n + 1-element

complex-conjugate vector of these angles, c, as follows:

c1 = 1 + 0i

cx+1 = eiθx

c2n+1−x = e−iθx ,∀x = 1 . . . n

(2.7)

where i =
√
−1. By taking the inverse Discrete Fourier Transform of c, the result is,

by construction, a unit-length real vector of length 2n + 1 for each conformation. This

vector can be used to calculate the autocorrelation function for all Φ-Ψ angles simulta-

neously, thus including all internal correlations among the angular dynamics [13].
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Structural Decorrelation Time

Another measure of protein dynamics is the structural decorrelation time (τdec)

of Lyman and Zuckerman [18]. This measure is calculated using a simple binning tech-

nique to construct structural histograms for different time-spans in a simulation. The

general idea behind this approach is that the relative populations of the bins should be

quite different at short time intervals, but should be similar at long time intervals. In

particular, at very long time scales, a sample should appear independently and identi-

cally distributed, and this assumption allows the calculation of an observable average

normalized variance of bin occupancy, σ2
obs(t), where t is the time interval between sub-

sequently sampled structures from a simulation. The value of σ2
obs(t) is high for small

t, indicating that the simulation is not making much progress through the conformation

space over this amount of time (structures separated at short times are typically still

assigned to the same bin or same set of bins). However, as t is increased, σ2
obs(t) will

eventually decrease to 1, indicating the time at which the simulation is equally likely

to end up in any of the structural bins, i.e. after time t two structures appear to be ef-

fectively decorrelated. Hence, a plot of σ2
obs(t) versus t will allow one to determine the

structural decorrelation time, τdec, for a simulation. Additionally, the number of struc-

tures N = 2 separated by t can also be made larger in order provide a more robust

estimate of τdec by decreasing the variance in the estimates of σ2
obs(t).

In a sense, the decorrelation time can be thought of as a general measure of

structural change, not just as a convergence statistic. For systems that have a large

number of degrees of freedom to search over, it could take an exceptionally long time

to search over the parameter space of the system. IDPs can be thought of as proteins

which have a large equilibrium conformation space, and the decorrelation time for these

proteins should be quite large for single simulations. NFPs on the other hand, when

simulated starting from the folded structure, will not stray far from the folded confor-

mation and quickly sample all of the conformation space that one can reasonably expect

from these proteins. So, NFPs should exhibit rather short decorrelation times. How-
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ever, there is no method that can determine definitively whether or not a simulation has

converged [19], and more complex systems should provide even more of a challenge in

this regard. Therefore, interpreting the structural decorrelation time for IDP simulations

might prove more challenging than interpreting it for NFP simulations.

2.2.5 Boxplots

In many figures, the boxplot is utilized to represent data distributions [20]. The

colored box represents the data range from the first quartile to the third quartile, with

the median represented by a black line across the central box region. The notches in

the sides of the box roughly approximate a 95% confidence interval, extending around

the median by ±1.58×RIQ√
n

, where RIQ is the interquartile range which is defined as the

difference between the third and first quartiles and n is the number of data elements.

The bottom and top whiskers each extend an additional 1.5 times the distance from

the median to the first and third quartiles, but they are truncated to the minimum and

maximum data values, respectively, if there are no outliers present. Outliers are plotted

as circles above and below the whiskers.

2.3 Results

2.3.1 Static Methods

Radius of Gyration

The radius of gyration for all structures across all of the simulations was calcu-

lated, and an average Rg value was then computed for each simulation independently.

The distribution of the average Rg for each of the different proteins is shown in Figure

2.5. Overall, the 3ns and 18ns simulations are in good agreement across all of the pro-

teins, although the 18ns simulations did not cover as broad of a range of Rg values as

the 3ns simulations. While the distributions for GLAG, GAFG, and GLFG are heavily
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overlapping for the 3ns and 18ns simulations, the 2ns simulations provide some addi-

tional insight. Taken together, all of the Rg results indicate that the proteins in order

from most extended to least extended is: SxSG, AxAG, FxFG, GLAG, GAFG, GLFG.

Shape Parameter

Just as the radius of gyration was computed for all structures, the shape parame-

ter, S, was also computed for all structures. The average value for each simulation was

taken and the distributions of these average values are shown in Figure 2.6. Interestingly,

the S data are somewhat different than the Rg data for the proteins. In particular, while

the SxSG protein was more extended than AxAG according to Rg, it appears that the

shapes of the SxSG conformations are more “rounded” than those for AxAG. It could

be that certain specific contacts are being formed by AxAG that give it a more prolate

arrangement, but additional data are needed to determine if this is the case. Addition-

ally, FxFG displays the widest variation in shape, suggesting that interesting structural

rearrangements occur during the 3ns and 18ns simulations, but this is not shown to be as

prevalent in the 2ns simulations. Meanwhile, GLAG displays more prolate arrangement

than either GAFG or GLFG which are both very spherical for the 18ns simulations. This

is consistent with the Rg results above which place GLAG in between its two mutants

and FxFG in terms of overall compaction.

Secondary Structure

The secondary structure assignment for all residues of the proteins across all

structures in the simulations was computed, and the results are plotted in Figures 2.7–

2.12. Overall, there is clearly more prevalence for helical structures in FxFG and its

mutants than GLFG and its mutants. In fact, Figures 2.7 and 2.8 show that the strength

of this helical propensity correlates with the Rg data in Figure 2.5. Therefore, SxSG has

the most α-helix content and GLFG has the least. In addition, there is relatively little

β-sheet structure in these simulations, only some bend structures which only loosely



26

SxSG AxAG FxFG GLAG GAFG GLFG

1
.5

2
.5

3
.5

R
g

A

SxSG AxAG FxFG GLAG GAFG GLFG

1
.5

2
.5

3
.5

R
g

B

SxSG AxAG FxFG GLAG GAFG GLFG

1
.5

2
.5

3
.5

R
g

C
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resemble β-structures. Again, this correlates with the Rg data, making the protein with

the least β-content SxSG, and GLFG having the least. In addition, there are regular

patterns of helical propensity along the protein sequences, but the sequences are also

spotted with marked decrease in the propensity for any structure at regular intervals. An

examination of the sequences of these regions confirms them to be heavy in proline and

glycine residues, which are known helix-disrupting amino acids.

Interresidue Distance Maps

Distance maps were generated for each of the FG-Nups by averaging distances

over all replicates. The standard deviation of these distances is plotted in the upper

triangle, and the mean in the lower triangle of each plot in Figures 2.13–2.15. The

standard deviation has been scaled by a constant factor of 3.0 to make the upper triangle

more readable. The units for all reported distance values are in angstroms (Å).

Overall, there are a few additional structural details that can be observed using

this analysis. There is a trend to see an off-diagonal depression in the mean distances

near one point for GLFG and its mutants in Figures 2.13D, 2.13E, and 2.13F. This

indicates a propensity for the protein to fold over in this location. However, FxFG

shown in Figure 2.13A, also shows a single off-diagonal depression. This one indicates

that the fold over point for this protein is more in the center of FxFG, while the fold

over point in GLFG and its mutants was slightly shifted to one side of the protein.

The 18ns data confirms these locations, but also indicates an additional off-diagonal

depression for GLFG and its mutants. This extra fold over point explains why the 18ns

S parameters indicated strongly spherical conformations. This little fold over point

must have often been loose in the 3ns simulations, making the structures more prolate.

Overall, the standard deviation of the distances is higher for FxFG and its mutants than

GLFG and its mutants, indicating larger amplitude conformational changes in FxFG

and its mutants. The 2ns data in Figure 2.15 adds little additional information to the

results as the off diagonal depressions are only faintly visible. However, these results
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Figure 2.7: Secondary Structure – 3ns @ 300K – (A) SxSG (B) AxAG (C) FxFG
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Figure 2.8: Secondary Structure – 3ns @ 300K – (A) GLAG (B) GAFG (C) GLFG



31

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99 104

F
ra

c
ti
o

n
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0A

Residue Number

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99 104

F
ra

c
ti
o

n
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0B

Residue Number

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99 104

F
ra

c
ti
o

n
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0C

Residue Number

Coil B−Bridge B−Sheet Bend A−Helix Pi−Helix 3−10−Helix Turn

Figure 2.9: Secondary Structure – 18ns @ 300K – (A) SxSG (B) AxAG (C) FxFG
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Figure 2.10: Secondary Structure – 18ns @ 300K – (A) GLAG (B) GAFG (C) GLFG
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Figure 2.11: Secondary Structure – 2ns @ 350K – (A) SxSG (B) AxAG (C) FxFG



34

1 5 9 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98 104 110 116

F
ra

c
ti
o

n
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0A

Residue Number

1 5 9 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98 104 110 116

F
ra

c
ti
o

n
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0B

Residue Number

1 5 9 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98 104 110 116

F
ra

c
ti
o

n
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0C

Residue Number

Coil B−Bridge B−Sheet Bend A−Helix Pi−Helix 3−10−Helix Turn

Figure 2.12: Secondary Structure – 2ns @ 350K – (A) GLAG (B) GAFG (C) GLFG
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do indicate that the more compact structures exhibited by GLFG and its mutants, as

described by the Rg calculations, are due to the propensity of this first fold over point

which allows persistent contacts to form even at high temperatures.

Rg–S Histograms

Rg–S histograms for each of the FG-Nups were generated as well. For a single

FG-Nup, all of the structures sampled from our simulations were taken and their Rg and

S values were calculated. The two sets were then used to generate a single normalized

2D Rg–S histogram which shows the probability of observing each particular combi-

nation of Rg and S. Zero-probability regions in the plots are kept white (instead of the

defined dark blue) in order to allow the boundary of the structural space to be easily

identified.

Interestingly, when comparing the results for the 3ns simulations in Figure 2.16

to the 18ns simulations in Figure 2.17, the distributions for FxFG and its mutants seem

to be more broad for the 18ns simulations, while GLFG and its mutants seem more

peaked. In essence, the long runs let GLFG and its mutants settle into more compact,

spherical structures. However, FxFG and its mutants would explore more extended,

prolate conformations. Thus, the time scales of the simulations seem to affect the con-

formational sampling in different ways depending on the properties of the protein being

simulated. In addition, the 2ns results in Figure 2.18 indicate that the conformations ex-

plored by the more extended proteins, AxAG, SxSG, and to a lesser extent, FxFG, show

a stronger correlation between Rg and S. Thus, the strength of this correlation at higher

temperatures is also a good indicator of structural differences between the proteins.

2.3.2 Dynamic Methods

Distance from Previous Structures

The distance from the initial structure as a function of time was computed for all

replicate simulations for all of the FG-Nups. After this, the replicate results were aver-
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Figure 2.13: Interresidue Distance Maps created by averaging across all 3ns simulations
at 300K for (A) SxSG, (B) AxAG, (C) FxFG, (D) GLAG, (E) GAFG, and (F) GLFG.
The lower/upper diagonal shows the mean/standard deviation of distances between all
pairs residues (standard deviation is scaled by a factor of 3 to enhance detail.)
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Figure 2.14: Interresidue Distance Maps created by averaging across all 18ns simula-
tions at 300K for (A) SxSG, (B) AxAG, (C) FxFG, (D) GLAG, (E) GAFG, and (F)
GLFG. The lower/upper diagonal shows the mean/standard deviation of distances be-
tween all pairs residues (standard deviation is scaled by a factor of 3 to enhance detail.)
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Figure 2.15: Interresidue Distance Maps created by averaging across all 2ns simulations
at 350K for (A) SxSG, (B) AxAG, (C) FxFG, (D) GLAG, (E) GAFG, and (F) GLFG.
The lower/upper diagonal shows the mean/standard deviation of distances between all
pairs residues (standard deviation is scaled by a factor of 3 to enhance detail.)
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Figure 2.16: Rg–S histograms showing the probability of structures arising with partic-
ular combinations of Rg and S compiled from all 3ns simulations at 300K of (A) SxSG,
(B) AxAG, (C) FxFG, (D) GLAG, (E) GAFG, and (F) GLFG
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Figure 2.17: Rg–S histograms showing the probability of structures arising with par-
ticular combinations of Rg and S compiled from all 18ns simulations at 300K of (A)
SxSG, (B) AxAG, (C) FxFG, (D) GLAG, (E) GAFG, and (F) GLFG
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Figure 2.18: Rg–S histograms showing the probability of structures arising with partic-
ular combinations of Rg and S compiled from all 2ns simulations at 350K of (A) SxSG,
(B) AxAG, (C) FxFG, (D) GLAG, (E) GAFG, and (F) GLFG
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aged at each time point to create the plots of RMSD (Figure 2.19), MAMMOTH z-score

(Figure 2.19), and the Euclidean Φ–Ψ distance (Figure 2.19) versus time. The first thing

to note is that MAMMOTH acts as a similarity measure instead of a dissimilarity mea-

sure. So, high z-scores indicate high probability of structural overlap while low z-scores

indicate a low probability of structural overlap. For the 3ns and 18ns data, the RMSD

and MAMMOTH results are in close agreement. However, the Φ–Ψ distance results

for these simulations are not in agreement with the RMSD and MAMMOTH results.

Both RMSD and MAMMOTH indicate that the most structural change is occurring in

the SxSG simulations and the least in the GLFG simulations, with the other proteins in

between following the same order as their order according to Rg. While the 2ns data

is less conclusive for the RMSD and MAMMOTH results because the results for all of

the proteins are heavily overlapping, the Φ–Ψ distance reports GLFG and its mutants to

be more dynamic than FxFG and its mutants. This is surprising, but perhaps there are

certain traits of the motion that are not observable using alignment-based methods.

Figures 2.22, 2.23, and 2.24 show the results for RMSD, MAMMOTH, and

Φ–Ψ distance, respectively, for distances calculated between t and t −∆t where ∆t =

100ps. These plots corroborate the results of the distance from initial structure, although

the relatively flat lines generated by this analysis may be better suited for obtaining an

average distance for some ∆t. Similar plots for ∆t = 1ns are shown in figures 2.22,

2.23, and 2.24, which also all agree with the results from above and for ∆t = 100ps.

Backbone Angle Autocorrelation

The autocorrelation function of the backbone angles using the DFT technique

described in the Methods section was calculated for all FG-Nup simulations. The av-

erage for each FG-Nup was then obtained by averaging the autocorrelation function

results for all simulations of the same length. The plot shown in Figure 2.28A shows the

average autocorrelation function for the 3ns simulations using a 200ps sliding window,

Figure 2.28B shows the average autocorrelation function for the 18ns simulations using
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Figure 2.19: RMSD from initial structure as a function of simulation time averaged
across all (A) 3ns @ 300K, (B) 18ns @ 300K, and (C) 2ns @ 350K simulations.
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Figure 2.20: MAMMOTH z-score from initial structure as a function of simulation
time averaged across all (A) 3ns @ 300K, (B) 18ns @ 300K, and (C) 2ns @ 350K
simulations.
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Figure 2.21: Φ–Ψ distance from initial structure as a function of simulation time aver-
aged across all (A) 3ns @ 300K, (B) 18ns @ 300K, and (C) 2ns @ 350K simulations.
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Figure 2.22: RMSD from structure at ∆t = 100ps as a function of simulation time av-
eraged across all (A) 3ns @ 300K, (B) 18ns @ 300K, and (C) 2ns @ 350K simulations.
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Figure 2.23: MAMMOTH z-score from structure at ∆t = 100ps as a function of simu-
lation time averaged across all (A) 3ns @ 300K, (B) 18ns @ 300K, and (C) 2ns @ 350K
simulations.
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Figure 2.24: Φ–Ψ distance structure at ∆t = 100ps as a function of simulation time av-
eraged across all (A) 3ns @ 300K, (B) 18ns @ 300K, and (C) 2ns @ 350K simulations.
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Figure 2.25: RMSD from structure at ∆t = 1ns as a function of simulation time aver-
aged across all (A) 3ns @ 300K, (B) 18ns @ 300K, and (C) 2ns @ 350K simulations.
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Figure 2.26: MAMMOTH z-score from structure at ∆t = 1ns as a function of simula-
tion time averaged across all (A) 3ns @ 300K, (B) 18ns @ 300K, and (C) 2ns @ 350K
simulations.
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Figure 2.27: Φ–Ψ distance structure at ∆t = 1ns as a function of simulation time aver-
aged across all (A) 3ns @ 300K, (B) 18ns @ 300K, and (C) 2ns @ 350K simulations.
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a 1ns sliding window, and Figure 2.28C shows the average autocorrelation function for

the 2ns simulations using a 100ps sliding window.

The results of this analysis differ between all three simulation conditions, simi-

lar to the Φ–Ψ distance plots above. However, the differences are more distinct for the

autocorrelation functions. For instance, FxFG has the most slowly decaying function in

all three conditions relative to its mutants, indicating the smallest amount of structural

change. GLFG shows the same trend among its mutants across the simulation condi-

tions. This is consistent with the previous analyses. However, the overall dynamics of

GLFG and its mutants seem to be more greatly affected by the increase in temperature

in the 2ns simulations to such an extent that the autocorrelation functions surpass even

SxSG. Therefore, these results indicate distinct dynamical properties between FxFG and

its mutants versus GLFG and its mutants.

Decorrelation Time

The σ2
obs(t) value for several values of t were calculated with sample sizes of

N = 2, using 10 independent histograms of 20 bins each for every 3ns simulation. The

σ2
obs(t) values at corresponding values of t across all 10 histograms and across all 3ns

simulations (40 × 10 = 400 histograms in total) were then averaged. The results are

shown in Figure 2.29A. The same protocol was followed for all 18ns simulations and

2ns simulations, and those data are shown in Figures 2.29B and 2.29C, respectively.

The decorrelation time, τdec, is the point where σ2
obs(t) decreases to 1. For the 3ns

simulations, this appears to be roughly around 450ps for all of the FG-Nups. The 18ns

simulation results indicate that τdec ≈ 2000ps, so there is not much consistency between

these results. The 2ns simulation results show a τdec ≈ 200ps.

Additional analysis was performed by running the algorithm for bothN = 4 and

N = 10 to see if the increased sample sizes would lead to more consistent estimates of

τdec. The results are shown in Figures 2.30 and 2.31, respectively. In both cases τdec

decreased, and was still inconsistent between the 3ns and 18ns results. For N = 4,
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Figure 2.28: Plots of the backbone angle autocorrelation function averaged across all
(A) 3ns @ 300K, (B) 18ns @ 300K, and (C) 2ns @ 350K simulations.
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τdec ≈ 350ps for the 3ns simulations, τdec ≈ 1500ps for the 18ns simulations, and

τdec ≈ 150ps for the 2ns simulations. For N = 10, τdec ≈ 180ps for the 3ns simulations,

τdec ≈ 800ps for the 18ns simulations, τdec ≈ 75ps for the 2ns. In general, the method

predicts that the simulations are well-converged at surprisingly short time scales, but

τdec seems far too sensitive to both simulation length and sample size to be a reliable

estimator.

It is interesting to note that while the estimates for τdec were inconsistent, there

was one pattern observed across all of the conditions examined: the rate of convergence

for each FG-Nup correlated well with earlier measures of protein dynamics. While

this pattern is observed in all of the decorrelation time results, it is perhaps clearest

in Figure 2.31A, where σ2
obs(t) converges from slowest to fastest in the following or-

der: GLFG, GAFG, GLAG, FxFG, AxAG, and SxSG. Therefore, the decorrelation time

algorithm predicts that GLFG explores its accessible conformation space more slowly

than any of the other FG-Nups and SxSG explores its a accessible conformation space

more quickly than any of the other FG-Nups. The 2ns simulation results show that this

pattern changes slightly at higher temperatures. FxFG and GLAG switch places in the

ordering, and SxSG and AxAG are virtually indistinguishable. Both patterns are con-

sistent with the prior Rg, S, distance map, and distance versus time results presented

above, as well as earlier experimental and theoretical results [21, 8].

2.4 Discussion

The analysis of a set of six FG-Nups indicates that these proteins span a wide

range of structural disorder. The Rg and S data show that the structures span from pro-

late, extended conformations to collapsed, almost spherical conformations, with various

structures in-between. This data is congruent with past experimental studies of FG-

Nup compaction [21, 8]. The main structural feature of compaction was the fold over

points found using the inter-residue distance map analysis. However, there was also a

difference in secondary structure that correlated well with the Rg data. Namely, more
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Figure 2.29: Decorrelation Time – N = 2 – (A) 3ns @ 300K (B) 18ns @ 300K (C) 2ns
@ 350K
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Figure 2.30: Decorrelation Time – N = 4 – (A) 3ns @ 300K (B) 18ns @ 300K (C) 2ns
@ 350K
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Figure 2.31: Decorrelation Time – N = 10 – (A) 3ns @ 300K (B) 18ns @ 300K (C)
2ns @ 350K



58

extended structures exhibited more α-helical content, and the more collapsed structures,

although still mainly helical, showed more propensity for β-content as well. In addition,

dynamical features such as the RMSD and MAMMOTH distances versus time corrobo-

rated these results. While the Φ–Ψ angle based distance analysis was inconclusive, the

autocorrelation functions indicated that the GLFG and FxFG wildtype FG-Nups were

less dynamical than corresponding mutants, and also that the GxxG-type FG-Nups were

more heavily affected by increases in temperature. Also, while the decorrelation time

algorithm failed to reliably determine the convergence properties of the simulations, the

results were still consistent with prior data on these proteins. Overall, these results indi-

cate that computational approaches to comparing and contrasting protein dynamics can

reliably classify the structural dynamics of both compact and extended IDPs.



Chapter 3

A Clustering Approach for Estimating

the Convergence of Protein Simulations

The previous chapter introduced several common techniques for quantifying pro-

tein dynamics using both static and dynamic features extracted from simulation trajec-

tories, but only briefly touched on the concept of simulation convergence. In particular,

the decorrelation time measure was implemented to aid in determining if and when the

conformation space of a protein has been adequately explored by a simulation. However,

this technique was unable to determine any significant difference between the conver-

gence rates of the simulations across the proteins studied even though many of the other

metrics explored indicated that such differences might exist.

In this chapter, a framework for assessing the convergence properties of protein

simulations based on clustering methods and basic information theory is developed [22].

The approach differs from standard applications of clustering MD trajectories in that it

does not try to ascertain what conformations are similar within a single replicate simula-

tion of a particular protein. Neither does it attempt to find the differences or similarities

in structure between the different proteins. Instead, clustering is used to understand how

the diversity of structures within a replicate simulation compares to the diversity be-

tween replicates. Understanding this is important because it will allow estimation of the

59
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amount of unique structural space being sampled in the simulations, and is particularly

relevant to non-equilibrium simulations such as disordered or intrinsically disordered

proteins where the conformation space might be largely unexplored even after many

other simulation properties have converged. The approach used in this chapter is re-

lated to the structural histogram approach of Lyman and Zuckerman [19] to determine

when a set of MD simulations is at equilibrium, but differs in that data is clustered from

multiple replicates in order to understand the trade-offs between running many, shorter

simulations and running fewer, longer simulations. Specifically, the clustering results

are used to determine to what extent replicate MD simulations of a single protein sample

independent regions of structural phase space in order to assess the overall convergence

of the simulations.

3.1 Background

Clustering has been widely used to analyze MD simulations of biopolymers,

particularly for determining the conformational states of the trajectories. Karpen, et al.

made use of a self-organizing neural network to cluster structures based on backbone

and side-chain dihedral angles of a small pentapeptide [23]. Best and Hege analyzed

simulations of a small tri-ribonucleotide by bi-partitioning the similarity graph defined

by the vector of intramolecular distances [24]. Lei et al. used hierarchical clustering

based on structural root-mean-squared distance (RMSD) to study folding via replica

exchange MD simulation of the villin headpiece subdomain [25]. The same system

was studied in a similar manner by Freddolino et al. using MD simulations on the

microsecond timescale [26]. While data clustering has been used to perform a variety

of analyses on MD simulations of proteins and other polypeptide structures, it has only

recently been applied to the study of intrinsically disordered proteins [27]. This list of

approaches is by no means exhaustive, and simply serves to illustrate the importance

of clustering in simulation analysis as well as the great variation in algorithms utilized

across MD studies.
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Clustering has also been used to study the convergence properties of simula-

tion trajectories. Lyman and Zuckerman [19] cluster simulations of met-enkephalin, a

pentapeptide neurotransmitter, by enforcing a cutoff radius on cluster size in a space de-

termined by the root mean-square distance (RMSD) between conformations. The result-

ing quantization of the conformational space is used to compute structural histograms.

Analysis of convergence is performed by comparing the histograms corresponding to

different temporal windows of the simulation. Finally, Shao et al. [28] perform an

extensive comparison of different clustering techniques to MD simulations of various

DNA systems. Eleven different clustering algorithms are considered all of which use

RMSD to compute the similarity between conformations. Their objective is to better

understand the different clustering algorithms rather than to gain insight into the simu-

lations. They conclude that there is no one perfect “one size fits all” algorithm but that

the results depend on the choice of atoms for the RMSD calculation and knowledge of

the number of clusters, among other things.

The study described in this chapter in the first to our knowledge to apply spectral

clustering to IDP simulations. Spectral clustering consists of three general steps. First,

the dissimilarities between all pairs of structures in an ensemble are computed. Root-

mean-squared distance (RMSD) is used for computing dissimilarities for all results pre-

sented in this study. Second, the matrix of pairwise similarities (obtained directly from

the dissimilarities) is normalized and its spectral decomposition is computed to obtain

the top k eigenvectors. Third, standard k-means clustering is applied to the (normalized)

points described by the top k eigenvectors. The optimal number of clusters is unknown

beforehand for most interesting phenomena, so one must examine the results for a range

of numbers.

Spectral clustering possesses several attributes that make it particularly well-

suited for clustering polymer simulations. First, it shares a formal relationship with

Markov-chain models where the dynamics are viewed as a random walk on a structure-

transition graph (or matrix) [29] which is also frequently expressed as random diffusion

on a free energy surface [30, 31]. Specifically, spectral clustering operates on the Lapla-
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cian of the graph of pairwise structural similarities which is analogous to the transition

matrix in the Markov-chain model. If the sampling of the simulation is sufficient, this

matrix defines a random walk on the free energy surface. Second, once the eigen decom-

position step is complete, repartitioning the ensemble into different numbers of clusters,

k, is fast, allowing the data to be easily examined at various levels of granularity. Third,

since the dissimilarity between all pairs of structures is calculated, disordered systems

which lack reference structures can be studied without introducing an unfavorable bias

due to the selection of a single reference structure (for the ensemble as a whole or for

each cluster), as must be done in most other clustering techniques. Finally, spectral

clustering is more informative of the local density of structures than other clustering

techniques. A byproduct of the algorithm is a similarity scaling parameter σ. This pa-

rameter is computed for each structure and characterizes the local density. Low values

of σ indicate that a structure resides in a densely populated region of structural space

while high values indicate the region is relatively sparse. When averaged over all struc-

tures belonging to a cluster, the similarity scaling parameter can be used to characterize

the cluster as corresponding to a metastable or transition state.

3.2 Methods

3.2.1 Spectral Clustering

Spectral clustering is a powerful methodology for partitioning data. Application

of this method results in a set of clusters, each of which contains a subset of the data that

is considered to show strong intra-cluster similarity and weak inter-cluster similarity ac-

cording to some metric (ex. Euclidean distance). The name “spectral” refers to the use

of eigen decomposition to compute the eigenvectors of the Laplacian matrix obtained

from an adjacency matrix (graph) representation of the data. The resulting top few

eigenvectors describe a nonlinear projection of the data onto a low dimensional man-

ifold. Applying a standard clustering algorithm to the projected data typically results
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in a more intuitive and useful partitioning, compared to applying a standard clustering

algorithm in the original data space [32, 33, 34].

Clustering algorithms often have to be adapted to deal with the structure-comparison

methods used in MD simulation, such as root-mean-squared distance (RMSD) or MAM-

MOTH [14], and often these modifications are not trivial [28]. Projected data does not

suffer from this drawback since any clustering algorithm which operates on real data

vectors can be used.

Research into spectral methods has resulted in a broad number of ways to define

the adjacency matrix and its respective Laplacian matrix [34]. A wide range of standard

clustering algorithms exist for processing the projected data as well. The methodology

outlined in [33] was chosen, which in turn is based on the algorithm in [32], with one

modification outlined below. This methodology presents several advantages over other

approaches:

• The projection step requires a single free parameter for defining a fully-connected

adjacency matrix, which can also be made sparse for most data sets.

• A normalized Laplacian matrix is used so that the resulting projection is a re-

laxed solution to the normalized cut problem from graph theory.

• The k-means clustering algorithm, a well-understood and commonly used clus-

tering algorithm, is used for processing the projected data.

The method proceeds as follows:

1. Consider P to be the set of n polymer or protein structures that are subject to

clustering.

2. Construct the dissimilarity matrix X ∈ Rn×n where xij = RMSD(Pi, Pj).

3. Construct the sorted distance matrix S ∈ Rn×n by sorting each row of X in

ascending order.
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4. Construct the scaling parameter vector σ ∈ Rn where σi = 1
q

∑q+1
j=2 sij and

q ∈ Z, 0 < q < n.

5. Construct the adjacency matrix A ∈ Rn×n where aij = exp(−x2i,j/2σiσj) for

i 6= j,Aii = 0.

6. Construct the normalized graph Laplacian L = D−1/2AD−1/2 where D is a

diagonal matrix with Dii =
∑

j aij .

7. Compute the eigen decomposition of L = QΛQ′

8. Construct the projected data matrix Y ∈ Rn×k by stacking the k eigenvectors

associated with the k largest eigenvalues by column and normalize each of the

rows to unit length.

9. Apply k-means clustering to the row vectors in Y.

The above approach differs from the approach of Zelnik-Manor and Perona [33]

in step 4. While they use σi = si(q+1) (the distance between the qth closest structure

to structure i and structure i itself), here instead σi = 1
q

∑q+1
j=2 sij (the average distance

from structure i to the q closest structures to structure i). This modification makes the

algorithm more robust to the choice of q which is especially important for exploratory

data analysis. A value of q = 10 was chosen for all analyses presented here, as this

value produced results similar to earlier work where a single σ value for all structures

was determined by manual search and found to be rather insensitive for the simulation

data presented here [22].

It is also worth noting that step 2 is not limited to any particular pairwise distance

function for computing dissimilarity. RMSD is used here because of its ubiquitous

application in MD simulation studies. However, any dissimilarity function could be

chosen, and may vary depending on the particular application. The systems studied

here display large amplitude motions, and RMSD has been criticized in the past for

performing poorly when comparing very dissimilar structures. In essence, two structures
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that are very different from one another might both appear relatively similar to a third,

not necessarily intermediate, structure. This limitation does not prove to be a problem in

the context of graph-based clustering methods, such as spectral clustering. The Gaussian

kernel in step 5, combined with the locally-scaled parameters from step 4, allows the

algorithm to focus on the local, valid structural comparisons and ignore the more distant,

less discriminative comparisons. This kernel function is essentially a soft version of the

hard RMSD cutoff used in many other clustering methods, but it can be locally adapted

to the data at hand via the scaling parameters, σ. The potential sparsity that can be

induced upon the matrices by applying a cutoff for the small Gaussian kernal affinity

values also affords the use of fast sparse linear algebra routines, greatly reducing the

computational demands of the algorithm.

In step 9, k-means clustering is utilized to perform the final partitioning in the

projected data space. The reader is directed to the seminal paper by MacQueen for the

details of the algorithm [35]. The k-means clustering algorithm requires specification of

several parameters:

• The number of clusters, k.

• The number of times to run the algorithm with different initial positions for the

k cluster centroids.

• The maximum number of iterations for the algorithm.

The last two of these must be chosen so that there is a reasonable expectation

that the optimal solution is obtained. A random selection of k points from the row

vectors of Y is used to initialize the algorithm. This is done ten times and the re-

sult with the smallest sum of the inter-cluster centroid-point distances is considered:∑k
i

∑
yj∈Ci ‖yj − µi‖

2, where Ci is the set of points partitioned into the ith cluster and

µi is the mean, or centroid, of the points in Ci. The choice of ten restarts is a con-

servative number of iterations given that the dimensionality of the projected space is

equal to k, which, in this work, is always at least two orders of magnitude smaller that
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the number of points. However, it is impossible to prove that the algorithm has indeed

found the optimal partitioning, which is a recognized short-coming of many clustering

approaches. The algorithm is run for a maximum of thirty iterations or until the parti-

tioning does not change between the last and most recent iterations. This final parameter

is a practical way to avoid the rare occurrence of infinite oscillations, but the algorithm

always terminated prior to thirty iterations for all analyses presented here.

3.2.2 Direct Application of K-means Clustering

Previous work has focused on applying clustering techniques directly to MD

trajectories without first applying spectral decomposition. K-means is one of the al-

gorithms studied by Shao et al. [28] so in addition to the spectral clustering approach

outlined above, k-means was applied directly to the trajectories for comparison. While

k-means clustering often performs well in practice, there are certain details that must

be carefully considered. First, the algorithm is known to be quite sensitive to the initial

placement of the k centroids. Shao et al. utilize a deterministic heuristic for initializa-

tion of the algorithm in order to save overall computational time by only needed to run

the algorithm once and also in order to limit the number of free parameters that the user

must specify when using their software; however, to have confidence in the results, one

would need to run the algorithm multiple times from different random initial conditions

and use the solution with the minimum sum of intra-cluster variances.

Even more problematic is the need to average the feature vectors within a cluster

to obtain each cluster centroid for the next iteration of the algorithm. Shao et al. care-

fully investigate the tradeoffs in methods for calculating an “average” structure but there

is no method that can ensure the result will be a physically reasonable protein structure.

This is due to the fact that the constraints on bond lengths, atom sizes, torsional an-

gles, etc. in MD trajectories constrain the relationships between the atomic coordinate

such that simply averaging dissimilar structures results in gross violations to these con-

straints. In fact, any clustering approach that relies on an average or canonical structure
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of a cluster, without constraining such a structure to be a possible conformation of the

system, could suffer from severe limitations when dealing with any domain where there

are constraints on the values of the coordinate positions.

Spectral clustering effectively overcomes the limitations of the simple k-means

approach discussed above. The generation of average or canonical structures for a clus-

ter is avoided because there is no need to calculate a canonical structure for each centroid

in the original space of protein conformations. This method is also fast in practice (al-

though not as fast as a direct application of k-means) since efficient algorithms exist for

computing the first few eigenvectors of a symmetric matrix (often the affinity matrix is

sparse as well). Also, the matrix Y is typically much smaller than the original set X ,

and the points in Y are no longer in the original 3D structural space. So, while RMSD

is used to compute the affinity matrix A, it is not used to cluster the points in Y . Instead,

simply Euclidean distance is used.

Hence, while calculating physically meaningful canonical structures seemingly

limits the use of k-means for clustering MD trajectories, spectral approaches avoid ex-

plicitly calculating average structures and therefore are particularly well-suited for ana-

lyzing MD trajectories.

3.2.3 Molecular Dynamics Simulations

For all of the work in this chapter, the simulation data set from Section 2.2.1 is

utilized. This data set consists of a set of intrinsically disordered protein fragments sim-

ulated at short and long time-scales that have been shown to exhibit different dynamical

properties. Please see Section 2.2.1 for the details on the proteins simulated, protocols

employed, and general motivation for this approach.
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3.3 Results

3.3.1 Spectral Clustering of FG-Nups

In order to assess the diversity of structures explored by each FG-Nup, each of

the five FG-Nups was clustered separately. To make the trajectory data tractable for

clustering, every tenth frame was sampled from each replicate and the forty subsampled

trajectories were concatenated into one set of structures. Therefore, the first 300 struc-

tures were all from replicate one, the next 300 structures were from replicate two, etc.

for a total of 12000 structures. Spectral clustering was then applied to this composite set

of structures. The number of clusters was specified to be k = 40 (one cluster per repli-

cate) for each protein with the hope of understanding how much the replicates overlap

in conformation space, or if they are disjoint. Likewise, every tenth frame was sampled

from each of the 18ns replicates and concatenated these five trajectories into one set of

9000 structures for each FG-Nup. These trajectories were then clustered with k = 5.

Graphs showing cluster membership for the five proteins are shown in Figures

3.1 and 3.3.1 Separate plots are shown for each distinct FG-Nup, and each plot shows the

results of clustering all 40 independent replicates. These plots show the joint distribution

of replicate to cluster assignment where each element in the image at location (i, j)

corresponds to the fraction of the structures in the concatenated trajectory that were

both sampled from replicate i and assigned to cluster j. The interesting thing to note

here is that the GLFG motif is clustered in such a way that almost every replicate is

contained within its own cluster. This shows that the structural diversity within each

GLFG replicate is small compared to the diversity between clusters. In contrast, for

FxFG and its mutants, the replicates do not cluster into unique clusters. Therefore, it

seems likely that the structural space explored by each replicate for FxFG is very diverse

compared to the inter-replicate diversity.

1The algorithms do not naturally order the clusters so cleanly as is displayed in these graphs. Rather,
each cluster is relabeled so as to align it to the replicate most commonly associated with itself. This is
done by simply relabeling each cluster based on the replicate from which the median structure was taken.
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Figure 3.1: Results from applying spectral clustering to the 3ns trajectory data.
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Figure 3.2: Results from applying k-means clustering to the 3ns trajectory data.
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Figure 3.3: Results from applying spectral clustering to the 18ns trajectory data.
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Figure 3.4: Results from applying k-means clustering to the 18ns trajectory data.
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Table 3.1: FG-Nup clustering results, including FG-Nup fragment motifs, lengths in
amino acids (AA), and normalized mutual information in replicate-cluster assignment.
A value of one indicates that each replicate was placed in a cluster by itself and zero
indicates a uniform assignment of replicate structures across all clusters.

FG-Nup Motif Spectral 3ns Spectral 18ns K-means 3ns K-means 18ns
SxSG 0.138 0.047 0.147 0.051
AxAG 0.686 0.089 0.683 0.116
FxFG 0.841 0.666 0.841 0.521
GALG 0.864 1.000 0.855 0.526
GAFG 0.912 1.000 0.959 0.762
GLFG 0.839 1.000 0.949 1.000

While it is not a surprise for the trajectories for each replicate to be very differ-

ent, as in the GLFG cases, it is surprising that the seemingly more extended and rapidly

changing FG-Nups such as FxFG and AxAG do not display this behavior. However,

if the simulations were continued for a much more extended period of time, one might

expect the GLFG trajectories to begin to overlap in structural similarity as well. This

hypothesis was tested by applying the same clustering approach to the five 18ns simu-

lations for each FG-Nup (five replicates of each protein). It is clear from Figure 3.3 that

simply extending the length of the simulations does not result in structural overlap. This

reinforces the previous results. The 18ns GLFG replicates remain clustered in separate

clusters, but the 18ns FxFG and AxAG replicates tend to overlap, even more so than in

the 3ns simulations (see mutual information results described below).

3.3.2 K-means Clustering of FG-Nups

Using the same protocol described above, k-means was directly applied to the

MD trajectories using the clustering software developed by Shao et al. [28]. Similar

trends can be found in the clustering results obtained from this program as those found

in the spectral clustering results. Figures 3.2 and 3.4 show the results of this analysis.

While there are general similarities between the spectral and k-means results, there are

some notable differences.
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In order to quantitatively evaluate how much each clustering algorithm was sep-

arating replicates into disjoint clusters, the mutual information [36] between the repli-

cates and clusters was calculated. Mutual information is a measure of independence of

two random variables – the replicate and cluster labels in this case – and is computed as:

I(A;B) =
∑
b∈B

∑
a∈A

p(a, b) log2

(
p(a, b)

p1(a)p2(b)

)

where p(a, b) is the joint probability distribution of two discrete random variables A

and B, p1(a) is the marginal probability distribution of A, and p2(b) is the marginal

probability distribution of B. This value is then normalized by dividing by the maxi-

mum attainable mutual information (log2(40) or log2(5) for the 3ns and 18ns results,

respectively) so that a value of one indicates perfect mutual information (each replicate

placed in a cluster by itself) and zero indicates no mutual information (uniform assign-

ment of replicate structures across all clusters). Taking the replicate-cluster assignment

histograms in Figures 3.1, 3.2, 3.3, and 3.4 to represent the joint probability distribu-

tion of replicate-cluster assignment, it is possible to compute mutual information from

these data. The normalized mutual information for each cluster assignment is shown

in Table 3.1. Each FG-Nup examined is identified by a particular 4 amino acid (AA)

motif that is repeated often along the protein sequence, and these are listed in column

one. The second column describes the length of each fragment (in amino acids) as well

as the name of the full-length yeast FG-Nup from which this fragment was taken. Mu-

tants are described in terms of a specific amino acid substitution (eg. phenylalanine

to alanine: F⇒A). The remaining columns show the normalized mutual information

computed from each of the four clustering experiments in the study.

Comparing the mutual information values in Table 3.1 gives insight into the inde-

pendence of the replicates and the efficiency with which they are sampling the structural

phase space of the FG-Nups. The 3ns replicates show relatively little loss of mutual

information indicating that each replicate is providing new sampling of structural space.

The 3ns AxAG simulations show the most decline in mutual information, consistent
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with the highest level of overlap in the replicate clusters. The 18ns simulations show a

wider range of diversity in mutual information. In particular, the 18ns spectral clustering

results from the AxAG and FxFG simulations show a general loss of mutual information

compared to GLFG, GLAG and GAFG. This suggests that, for the former FG-Nups, the

longer 18ns replicates are less efficient at sampling structural phase space than the 3ns

replicates. However, the k-means results do not show a consistent loss of mutual in-

formation between these two groups. Instead, only GLFG shows an increase in mutual

information. This discrepancy could be arising from the structure averaging process

and/or the initialization method used by the k-means clustering software. Regardless, it

is clear that spectral methods can more precisely and quantitative distinguish between

the two functional protein classes studied here than standard k-means due to the spec-

tral methods overall higher NMI values for the 18ns simulations and overall lower NMI

values for the 3ns simulations.

3.3.3 Comparison of Clustering and Standard Metrics

The previous chapter involving standard metrics of protein size and shape indi-

cated that the mutant varieties seem to express an even broader range of structures than

the wild-type, which is consistent with previous hypotheses on the role that the various

FG motifs play in structural arrangement [21]. However, one could incorrectly conclude

from these data that the structural diversity of FxFG across replicates is much greater

than the structural diversity of GLFG across replicates. However, these clustering ap-

proaches yield unique insights into the accessibility of structural regions explored by

IDPs that are not readily apparent using standard metrics.

For example, among the FG-Nups analyzed in previous work, GLFG was the

least structurally diverse and most rigid. These results might be evidence for a lack of di-

versity in the structural space sampled, but clustering results for GLFG reveal a different

picture. Since nearly all of the 40 GLFG replicate trajectories are clustered into separate

clusters, most of the GLFG replicates are sampling a distinct and non-overlapping por-
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tion of structural space. Therefore, the high dimensional clustering analysis shows that

the structural diversity within each GLFG replicate is small compared to the structural

diversity between replicates.

In contrast, the FxFG structures that appear to be the most structurally diverse

FG-Nups based on previous work, do not homogeneously cluster into different repli-

cates. Instead the FxFG clusters show a high degree of structural overlap between the

different replicates, which points out a limitation on using low-dimensional aggregate

measures of size and shape to categorize protein structure. The replicate simulations of

FG-Nups like FxFG which show a great diversity in conformational shape and size (Rg

and S) sample fewer distinct regions of structural space than the GLFG-like FG-Nups.

In other words, there are no high energy barriers separating one conformational state

from another, and the situation seems reversed for GLFG-like FG-Nups.

3.4 Conclusions

While standard metrics of protein size and structure yield some information

about the structural variation among the FG-Nups simulated, the application of clus-

tering to our trajectories provides additional insights into their structural properties.

Standard metrics lead us to infer that the FG-Nups characterized by the GLFG motif

and its mutants adopt more compact configurations than those containing the FxFG mo-

tif and its mutants. However, this tells us little about the dynamic behavior of these

FG-Nups. From the clustering results it is clear that GLFG and FxFG sample the sim-

ulation conformation space in very different ways. FxFG and its mutants all take on

more extended configurations that are highly dynamic and readily cross into and out of

structural configurations sampled by other replicates, broadly sampling the space of pos-

sible conformations. However, GLFG and its mutants tend to be less dynamic, sinking

into local energy minima that are fairly distinct from one replicate to another, thereby

slowing the structural evolution of these IDPs.

The results indicate that FG-Nups that are more extended, such as FxFG, tend to



77

broadly sample the space of possible conformations and for these FG-Nups, it doesn’t

matter whether one runs many, shorter simulations of extended FG-Nups or fewer,

longer simulations. In either case, the proteins should quickly sample the conformation

space. However, FG-Nups that are more compact, such as GLFG, persist in structural

arrangement over an extended period of time. Thus, running fewer, longer simulations

will result in sampling only a few small regions of the conformation space. When many

more replicates are run, the conformation space of several of the trajectories begins to

overlap. Of course, even if there begins to be conformational overlap across replicates,

this does not guarantee that the space is sampled effectively. Yet, a lack of overlap

necessarily means that there is a danger of undersampling.

These results provide information on the type and extent of MD simulations re-

quired to optimize the sampling of conformational space. Recall that the aim of replicate

simulations is to independently sample portions of structural phase space to allow mean-

ingful statistical descriptors of protein properties. The clustering analysis in this study

shows that the optimal MD simulation protocol depends on the properties of the IDP

being simulated. At one extreme, for GLFG the forty 3ns replicates as well as the five

18ns replicates are mostly clustered separately, indicating that each replicate is sampling

a new and independent region of structural phase space. At the other extreme, for AxAG

there is some overlap in the clustering of the replicates (and concomitant loss of mutual

information) for both 3ns and 18ns, but the loss of mutual information due to this over-

lap is much more dramatic for the 18ns AxAG replicates, indicating that these longer

simulations are not efficiently sampling structural phase space and that more, shorter

replicates would be more efficient. Similarly, the 18ns FxFG and GLAG proteins show

a large loss of mutual information. The clustering tools described here clearly corrob-

orate the observation that these proteins cover two distinct dynamical and functional

classes of IDPs.



Chapter 4

A Dimensionality Reduction Approach

to Comparing Intrinsic Protein

Disorder

In Chapter 3, a clustering framework for assessing the convergence of a set of

independent replicate simulations was presented, and its application to a set of IDP sim-

ulations suggested that they some were not well-converged, which was not the same re-

sult obtained from calculating the decorrelation time of the simulations. While some of

the other structural metrics investigated in Chapter 2 back up the results of the clustering

framework, methods which provide a visual representation of this result add additional

confidence in the results.

In this chapter, the technique of dimensionality reduction is used to visualize

the conformation space explored by protein simulations. While several techniques exist

for performing dimensionality reduction, some of the properties of unconverged simula-

tions are shown to make the application of certain approaches difficult in practice. Given

this situation, one technique is chosen for the task which provides an adequate solution

under these constraints, as well as several variations which have yet to be applied to the

study of protein dynamics. None of the variations are shown to provide any significant

78
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improvement, but this fact indicates that the standard application of the method is suf-

ficient for visualizing the conformation space explored by the unconverged simulations

of much higher dimension than are practically realizable regardless of the particular di-

mensionality reduction technique being used. In conclusion, the convergence properties

of the IDP simulations can easily be confirmed using two-dimensional projections of the

conformation space.

4.1 Background

4.1.1 Dynamics of Globular Proteins

Several techniques for examining the structural dynamics of simulated proteins

have been developed, and many have obtained wide applicability to the study of globular

proteins. Perhaps the most widely used methods are those based on harmonic analysis

or normal mode analysis. These methods can be used to extract the low-frequency

(large-amplitude) motions of a protein, very often the biologically relevant functional

properties. These methods are often portrayed as describing the fundamental dynamics

of proteins. However, anharmonic motions are common in protein dynamics so these

methods often fail to recover these kinds of motions. See [37] for a review of these

methods and their application to biomolecular dynamics. Lyman et al. [38] propose an

interesting extension to the elastic network model (a form of harmonic analysis also

described in [37]) that utilizes data from an MD simulation trajectory to tune various

model parameters. Relevant motions are more precisely determined using this approach

compared to standard elastic networks.

Since protein motion is often anharmonic, other methods often provide a bet-

ter picture of the underlying dynamics. One of the earliest and clearest examples is the

work by Amadei et al. [39] which describes the application of principal component anal-

ysis (PCA) via the 3N × 3N covariance matrix of atom positions for a 900 picosecond

solvated simulation of lysozyme. Their analysis reveals the presence of biologically rel-
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evant, nonlinear, large-amplitude motions along the first few principal components with

motions along the remaining principal components being more constrained and essen-

tially isotropic. This approach was later extended to utilize the space of Φ-Ψ dihedral

angles [12] or the vector of interatomic distances [40] instead of the raw atom positions

with slightly better results. Feher and Schmidt also used multidimensional scaling ap-

proaches, but focused primarily on using the results for effective clustering instead of

visualization [41]. More recently, Benson and Daggett [42], use a novel method of ap-

plying PCA developed by Teodoro et al. [43] to study the motions of individual atoms

across many protein simulations, encompassing a large variety of different folds. They

discover concerted directions of motion for residues in α-helices and β-sheets which

move primarily perpendicular to the principal axes of these secondary structure ele-

ments, while the entire secondary structure elements still show concerted motion in the

parallel direction. Even more interesting, they also find that many loop regions, which

are often associated with protein flexibility, are sometimes quite a bit more rigid than

even α-helices and β-sheets. The use of non-linear approaches, such as Isomap [44, 45]

and Laplacian Eigenmaps [46, 47], has also received recent attention in the literature.

However, it has also been observed that protein systems larger than just a few residues

will often produce conformation landscapes which are typically poorly described by

low-dimensional representations using any of the methods mentioned above [48].

4.1.2 Challenges of Disordered Protein Dynamics

While both harmonic analysis, PCA, and non-linear methods provide insights

into the motions of globular proteins or short peptides, it is not clear how to apply

these methods to large disordered systems. One important reason is that they require

a canonical structure which acts as the central reference point for determining motion

during the analysis. All motions are deviations around this reference structure which

results in certain motions appearing more or less harmonic than they actually are for

a disordered ensemble. While a canonical structure could be chosen or created from a
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conformational ensemble to use as the reference, it is not clear whether these approaches

are well-suited to the task.

Stamati et al. recently presented a method for studying the structural ensembles

of short peptides [44]. By applying Isomap directly to the RMSD graph of pairwise

structures, the need to determine or in any way define a canonical structure is avoided.

The results of Isomap are then used reduce the dimensionality of the data by projecting

the structures onto the 2 most relevant non-linear dimensions for visualizing the results.

The approach taken in this work is similar to that of Stamati et al. in two respects:

(1) it works with a structural ensemble that isn’t tied to any specific canonical structure

and (2) it operates on a reduced dimensionality embedding of the structural ensemble of

interest. Yet, the method also differs from the approach of Stamati et al. in several re-

spects: (1) metric scaling is used instead of Isomap for constructing a low-dimensional

embedding, and (2) the visualization of the conformation landscape is used to validate

the convergence of the simulations. This approach is taken because the dimensionality

of the conformation spaces studied here are much higher than those used by Stamati et

al.. In brief, the gaps or holes in the conformation landscape from unconverged simu-

lations render the results of Isomap essentially equivalent to the simpler metric scaling

approach. Also, while the use of other nonlinear techniques which have been developed

to deal with disjoint manifolds (e.g. Stochastic Neighbor Embedding [49]) might pro-

vide a small amount of additional information on simulation convergence, the investiga-

tion of several correction methods for non-metric distances for metric scaling (discussed

below) are of current interest since the structure comparison method employed here is

non-metric.

4.1.3 Recent Developments in Metric Scaling

Metric scaling provides an elegant, closed-form solution to the problem of em-

bedding pairwise distance data into a Euclidean space. The resulting embedding can

used to extract geometrical properties (intrinsic dimensionality, volume, density, etc.)
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of the data. Also, the embedded data can be used in conjunction with other machine

learning or statistical methods that cannot operate on pairwise distance data since met-

ric scaling casts the data into a more typical vector space representation. The embedding

produced by metric scaling is similar to PCA in that the first dimension of the embed-

ding is the one that spans the direction of largest variance in the data, and subsequent

dimensions are orthogonal directions stacked in order of decreasing variance. Metric

scaling is typically more expensive to compute than PCA (except in the case where the

number of data points is less than the dimensionality of the data), but it only requires

pairwise distance information instead of vector coordinates. This makes it particularly

well-suited for studying systems like disordered proteins, which lack a canonical refer-

ence state from which to determine vector coordinates.

While metric scaling is an attractive technique for studying protein dynamics,

certain constraints on its operation need to be addressed. Let X be a set of objects

and d(xi, xj) be the distance between objects xi and xj . The complete set of pairwise

distances for all objects in X is considered metric if:

d(xi, xj) ≥ 0 ∀x ∈ X (4.1)

d(xi, xj) = 0 iff xi = xj (4.2)

d(xi, xj) = d(xj, xi) ∀x ∈ X (4.3)

d(xi, xj) ≤ d(xi, xk) + d(xj, xk) ∀x ∈ X (4.4)

Given a set of metric pairwise distances, metric scaling can construct a Euclidean space

that perfectly preserves these distance relationships. The precision and efficiency of

metric scaling make it an attractive method for embedding pairwise data. However,

most pairwise distance data from real-world problems do not obey the above constraints

due to noisy measurements, missing data, or deficiencies in the distance measure, d. A

set of distances for which any element violates one or more of the four constraints above

is considered non-metric. (One can likewise label the distance measure, d, as metric or
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non-metric.) While the nonlinear nature of proteins simulation data presents the most

serious drawback to the application of metric scaling, the need for metric data is a also

a practical drawback to applying metric scaling to protein simulation data.

While the formal underpinnings of metric scaling preclude the use of non-metric

input data, previous work has shown metric scaling to nonetheless be a robust em-

bedding method for non-metric distances as well by performing “corrections” to al-

low metric scaling to compute a Euclidean embedding [50]. Two correction methods

have been developed that effectively cast non-metric pairwise distances into a Euclidean

space [51, 52]. These will be discussed in more detail but both have a common focus:

adding a constant value to all pairwise distances (or to all squared pairwise distances).

The scale of the resulting embedding is much larger, but this scaling can easily be fac-

tored out in later analyses.

Recently, Roth et al. [53] apparently independently discovered the correction

method used by Lingoes [51]. However, the method of Roth et al. differs in its practi-

cal implementation. Instead of adding a positive constant to the squared pairwise dis-

tances, they simply add this constant to the resulting eigenvalues of the double-centered,

squared distance matrix. These modified eigenvalues are then used to construct the

Euclidean coordinates as in typical metric scaling (the eigenvectors do not need to be

recomputed since they are in fact the same for both the corrected and uncorrected ma-

trices). The result is a more efficient correction algorithm since the limiting step, eigen

decomposition, only needs to be computed once (the other correction methods require

the eigen decomposition to be recomputed once more on the corrected distance matrix).

However, the analyses indicate that the technique of Roth et al. slowly breaks down as

higher dimensional embeddings are required, making Lingoes’s or Cailliez’s [52] cor-

rection a more sound option. A formal explanation of this technique in the context of

metric scaling will be provided in the next section.
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4.2 Methods

4.2.1 Metric Scaling

Metric scaling is a method, summarized by Gower [54], for recovering a set of

coordinates in Euclidean space given only the distances between all pairs of coordinates.

Consider the coordinate matrix X of size N ×M where each row vector, x, in X is a

coordinate in <M and N is the number of coordinates. Construct the distance matrix

D1 of size N ×N where each element dij is the Euclidean distance between points xi

and xj:

dij =

√√√√ M∑
m=1

|xim − xjm|2 (4.5)

Likewise, let D2 be the matrix of squared Euclidean distances, where each element is

d2ij . Apply a translation and scaling to D2 known as double-centering:

D̂ = −1

2
JD2J (4.6)

where

J = I− 1

N
1 (4.7)

and 1 is the N ×N matrix of ones and I is the N ×N identity matrix. Then, compute

the eigen decomposition of D̂:

D̂ = QΛQ′ (4.8)

where Q is the N × N matrix of eigenvectors and Λ is the N × N diagonal matrix

of eigenvalues. The coordinates of the original points, X, can be recovered by the

following:

Y = QΛ1/2 (4.9)

where Y is an N × N matrix of Euclidean coordinates. The first M columns of Y

correspond to X, and the remaining columns are all zero. Note that performing dimen-
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sionality reduction on the embedding is done by choosing only the first L columns from

Y where L < M , similar to PCA.

So long as D1 is metric, the correct Euclidean embedding, Y, will be recov-

ered exactly if a sufficient number of latent dimensions (L) is chosen. Metric distances

guarantee that the double-centered matrix, D̂, is positive semi-definite, making the re-

sulting eigenvalues, Λ, and eigenvectors, Q, all non-negative, real numbers. If D1 is

non-metric, then D̂ is not positive semi-definite, and Λ will have at least one negative

value and/or Q will have at least one complex value. Therefore, equation 4.9 will not

recover an embedding that is in <N . Therefore, some pairwise distance data will not

have a corresponding Euclidean embedding.

4.2.2 Metric Scaling Correction Methods

There are conditions under which corrections can be made to D1 (or D2) in

order to construct a Euclidean embedding using metric scaling. If D1 only violates

the constraint in equation 4.4, then Λ will have at least one negative value, and Q will

only contain real values. In this case, the only problem with recovering an embedding

in <M using equation 4.9 is the negative eigenvalues. As a naive solution, one could

simply discard the negative eigenvalues and corresponding eigenvectors. The resulting

embedding is only an approximation of the true embedding, and, while still useful in

the context of dimensionality reduction, it is not guaranteed to preserve the pairwise

distances in any reasonable way.

Lingoes presents the first technique for addressing the problem of negative eigen-

values [51]. First, partially compute the metric scaling solution using equations 4.6, 4.7,

and 4.8. Then compute an adjusted D2 by adding a constant value −2λmin to all off-

diagonal elements of D2 where λmin is the smallest eigenvalue in Λ. Then repeat

metric scaling on the adjusted squared distance matrix. This method ensures that D̂ will

be positive semi-definite, and all eigenvalues will now be non-negative.

Cailliez later presented an analytical technique for calculating an adjustment to
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the original distances rather than the squared distances [52]. This constant is obtained

by solving for the largest eigenvalue (λmax) of the following matrix: 0 2D̂

−I −JD1J

 (4.10)

The new squared distance matrix can then be obtained by adding λmax to all off-

diagonal elements of D1 and then squaring element-wise. Then repeat metric scaling

on the adjusted squared distance matrix. Again, D̂ will be positive semi-definite, and all

eigenvalues will be non-negative.

The method of Roth et al. is similar [53]. After computing equation 4.8, add

−2λmin to all diagonal elements of Λ. Then compute the embedding Y using the

adjusted Λ.1 The theoretical motivation for this method appears to be identical to those

proposed by Lingoes, but it is computationally less intensive.

Computing metric scaling for large sets of structures can be computationally

demanding if N is large. However, efficient methods exist for extending metric scaling

embeddings with out-of-sample points [55]. This would allow the incorporation of the

remaining structures into the results. Such methods were unnecessary for the analyses

presented here, but will no doubt be critical to the assessment of large-scale simulations

such as those obtained via coarse-graining or enhanced-sampling simulation techniques.

Such techniques are beyond the scope of this work, and the reader is referred to [56]

and [57] for recent applications of these techniques.

4.2.3 Molecular Dynamics Simulations

Just as in Chapter 3, the simulation data set from Chapter 2 is utilized. This

data set consists of a set of intrinsically disordered protein fragments simulated at short

and long time-scales that have been shown to exhibit different dynamical properties.

1Roth et al. actually throw out two of the eigenvectors in their original formulation, corresponding
to the last eigenvalue and the one zero eigenvalue in the standard metric scaling solution. Here, all
eigenvectors are retained for generality, though this has little effect on the results.
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Please see Section 2.2.1 for the details on the proteins simulated, protocols employed,

and general motivation for this approach.

4.3 Results

4.3.1 Dynamics of a Single Trajectory

First, a single 18ns trajectory of each FG-Nup is analyzed using metric scaling.

Structures were sampled from the trajectory every 10ps. The RMSD between every

pair of structures was computed using only the backbone Cα atoms in Angstroms (Å).

RMSD is a non-metric distance measure2, and the resulting distance matrices were all

non-metric and symmetric.

Figure 4.1 shows a plot of the percentage of variance accounted for by each

subsequent dimension. (Only the non-corrected method is considered for now. See

section 4.3.3 for a more complete discussion of the correction methods.) Reducing the

dimensionality of the data set can be achieved by excluding dimensions that account for

small fractions of the variance, similar to PCA. We utilize this technique by examining

the data reduced to just two dimensions. Of course, this removes a large percentage of

the useful distance information from the embedding, but it is shown to still provide more

insight into the structural dynamics of the proteins compared to standard methods.

The top of Figure 4.2 shows the change in RMSD from the initial structure over

time for GLFG (left) and SxSG (right), a common method of determining if the motions

of a protein are reasonably equilibrated. Over time, the plot should level off, indicating

that the amount of structural change has become constant. For folded proteins this

typically converges to 2-3Å RMSD. Compare these plots to those in the bottom of Figure

4.2 which shows plots of the first two dimensional components from metric scaling.

The color shift indicates progression in time.3 The RMSD plot for SxSG shows that

2RMSD violates the constraint in equation 4.4, but none of the remaining three.
3All 2D maps incorporate some information from the third dimensional component as well since all

coordinates were sorted along this dimension and then plotted in order. Hence, the lines are “stacked”
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Figure 4.1: Top: Cumulative percentage of variance accounted for by each dimension
for GLFG (left) and SxSG (right). Bottom: The reconstruction error attained by utilizing
the specified number of dimensions. The noisy nature of molecular motion makes it
difficult to determine an optimal number of dimensions, but these results indicate that
the main modes are captured as effectively by metric scaling without corrections as
metric scaling with corrections.



89

the RMSD quickly converges to a large value, consistent with expected values for a

disordered protein, but the one for GLFG is showing transitions between intermediate

RMSD values. However, the metric scaling results from these two simulations clearly

show that GLFG has not converged.

The metric scaling results also reveal differences between the motions exhibited

by GLFG and SxSG. First, the motions of GLFG are much more constrained than those

of SxSG. This can be seen by comparing the scale along each dimension. The range

of the motion is roughly three times greater for SxSG. Second, the motion of SxSG is

fairly unconstrained, and it quickly covers the accessible conformation space. It also

regularly revisits areas of conformation space. However, GLFG motions are highly

constrained and the simulation has trouble exploring the accessible conformation space,

becoming trapped in several conformations. Third, it is clear that there is no single refer-

ence structure that can summarize the conformations explored by these proteins. While

GLFG might be described in terms of a few structures due to the tendency to remain

trapped in a few conformations, it is not clear how many structures would be needed

to similarly summarize SxSG. Even if such a set was generated for SxSG, it is unclear

how this would be useful for comparing the dynamics of two disordered proteins. Over-

all, GLFG behaves like a premolten globule while SxSG displays no conformational

trapping, exploring the available conformation space like an extended coil.

4.3.2 Comparing Multiple Trajectories

Structures sampled every 10ps from all forty 3ns simulations of SxSG and GLFG

were combined for metric scaling. The same was done for the five 18ns simulations.

The resulting two-dimensional embeddings are shown in Figure 4.3. It is clear that the

SxSG simulations sample the available conformation space more effectively than GLFG.

GLFG consistently becomes trapped in some conformations as shown earlier. However,

the effect is even more pronounced in the 18ns simulations. The results indicate that

into the third dimension. This additional information makes the temporal effects more clear in the 2D
plots.
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Figure 4.2: Top: RMSD from starting structure versus time for GLFG (left) and SxSG
(right), a typical method of determining if conformational sampling has converged. Bot-
tom: Two-dimensional maps provided by metric scaling for GLFG (left) and SxSG
(right). The RMSD plot for GLFG is ambiguous as to whether the simulation is con-
verging, but the metric scaling results clearly show that the GLFG simulation is not
converging. However, SxSG has clearly converged.
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simulation protocols favoring longer simulations are in danger of undersampling the

conformational space of certain disordered proteins. In order to effectively sample the

conformation space of cohesive disordered proteins (similar to GLFG), many shorter

simulations would be far more adequate than longer simulations which would become

trapped in rather static conformations. However, extended coils (similar to SxSG) would

sample conformation space more effectively in longer simulations.

4.3.3 Comparing Correction Methods

The individual 18ns trajectories examined earlier were also tested with all three

correction methods for non-metric distances. The top of Figure 4.1 shows the percent-

age of variance accounted for by each subsequent dimension while the bottom shows

the normalized reconstruction error attributed to using each of the correction methods

compared to standard metric scaling. The reconstruction error is the sum-squared dif-

ference between the original distance matrix used to obtain the embedding and one that

is calculated from the metric scaling embedding itself. Increasing numbers of dimen-

sions can be added and compared in order to determine the “optimal” size embedding,

potentially signaled by a minimum in reconstruction error.

Using no corrections, a minimum is observed that corresponds to a reasonably

small number of dimensions and reconstruction error. For Lingoes and Cailliez cor-

rections, the minimum is not observed until all dimensions are used. The minimum is

actually zero in these cases, which indicates that the corrected embeddings are perfectly

Euclidean. However, the need to use so many dimensions is impractical for application

here. The two dimensional embeddings were the same as the non-corrected results to a

scaling factor (data not shown). Therefore, for examining protein dynamics in just a few

dimensions, non-corrected metric scaling works well compared to the corrected versions

which show larger reconstruction error for the same number of dimensions. However,

future work is needed to understand if higher dimensional embeddings would need the

corrections to accurately describe the dynamics.
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Figure 4.3: Two-dimensional embedding results from metric scaling of structures sam-
pled across all trajectories for GLFG (left) and SxSG (right). Each trajectory was plotted
as a uniquely colored line through the embedding. Top: five 18ns simulations Bottom:
forty 3ns simulations
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Since the method proposed by Roth et al. has the same underlying theory as

Lingoes method, the reconstruction error curve should be similar, but this is found to not

be true in practice. Notice the deviations from Lingoes method for higher dimensions,

a result of the fact that the eigenvectors associated with smaller eigenvalues need to

be recomputed for accurate reconstruction to occur. By avoiding this calculation, the

method of Roth et al. is much more efficient, but is no longer able to properly reconstruct

the corrected distances for higher dimensional embeddings.

4.4 Conclusion

Metric scaling provides fundamental insights into the dynamics of disordered

proteins. These dynamics are not revealed using traditional MD simulation analysis

methods. The results have shown that metric scaling can distinguish between the dynam-

ics of differing disordered proteins both quantitatively and qualitatively. The method

directly computes the size of the structural space sampled by MD simulations and the

density of the resulting embeddings can inform protocol development for the simulation

of disordered biomolecules.

The results in this chapter confirm earlier results concerning the convergence

properties of this set of IDP simulations. In particular, it is clear by visual inspection

that GLFG simulations are less converged than the AxAG simulations, which is in con-

cert with the earlier clustering results in Chapter 3. While the visual confirmation of this

fact was informative, the clustering protocol provided a more precise quantitative dis-

crimination between the different proteins, and the correction methods for metric scaling

don’t appear to provide any significant improvements to the resulting embeddings. In

fact, the effects seem to be greatest in the least-significant dimensions rather than the

most significant ones.

In the future, non-linear dimensionality reduction methods could be utilized [58,

59, 60] for studying IDP dynamics, especially since fast computational approaches for

these methods have been recently introduced [61]. In addition, methods for studying
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manifolds of mixed density and dimensionality [62, 63] may be more appropriate for

MD simulations than those that focus on learning embeddings with a single, fixed num-

ber of dimensions. Another major consideration is the effect of noise on these tech-

niques. While low-pass filtering is utilized in later chapters as a fast method for for

reducing noise, other techniques for smoothing noise [64] have been developed which

may prove more effective for future dimensionality reduction studies of protein dynam-

ics.



Chapter 5

Validation of Clustering Algorithms for

Protein Simulations Using Polymer

Models

Chapter 3 illustrated how clustering techniques can be used in to calculate useful

properties of molecular simulations. MD simulation is particularly well-suited for sam-

pling the meta-stable and transitional conformations which characterize IDP dyanmics

and are relevant to performing their requisite functions, and computational data clus-

tering has emerged as a useful, automated technique for determining the meta-stable

and transition states from MD simulations. Clustering methodologies applied to the

results of MD simulations focus on partitioning structural ensembles into groups of

structures which share similar conformational features. It is hoped that when applied to

simulations of biomolecules, the clustering results in partitions which correspond to the

descriptive – metastable and transition – states of the system. However, clustering the

trajectories of real biomolecules typically does not readily provide such a straightfor-

ward partitioning due to the high dimensionality of the conformational space, thermal

noise, and other factors. Identifying the descriptive states also requires an understand-

ing of the clustering process itself. A primary goal of this chapter therefore is to provide

95



96

such an understanding through a detailed analysis of data clustering applied to a series

of increasingly complex biopolymer models.

In this chapter, a novel series of models is developed using basic polymer theory

that have intuitive, clearly-defined dynamics and exhibit the essential properties that one

might seek to identify in MD simulations of the real biomolecules. Importantly, these

models allow us to determine the properties a clustering algorithm can reliably extract

from polymer data, unconfounded by the computational complexities and limitations of

all-atom simulation. A series of models is created where each new model increases upon

the complexity of the previous so that the dynamics and properties start to approach that

of all-atom simulation dynamics. Spectral clustering is applied to the model polymers,

and statistics from the various clusters are computed in order to determine which statis-

tical features link clusters to the properties displayed by the polymer models. Finally,

the clustering results from the polymer studies are compared to clustering results from

all-atom MD simulations of several IDPs. While spectral clustering is again the cluster-

ing algorithm of choice for this study, it is not the only algorithm that could be used, and

another algorithm might actually be more appropriate and accurate for computing these

properties. This protocol allows us to determine if and when the clustering method is no

longer able to determine the descriptive states of the systems, as well as the underlying

reasons for these limitations.

5.1 Background

While it is clear that clustering has been widely used in the field of MD simu-

lation, relatively little work has been done to determine if the clustering algorithms are

actually extracting useful information. For instance, Shao et al. provide one of the few

(if not the only) in-depth studies of clustering for MD simulation [28]. They compare

various clustering algorithms to determine how well these algorithms can adequately

separate structures in ensembles taken from manually concatenated, remarkably distinct

MD trajectories. Even though the trajectories cover very different portions of conforma-
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tion space, there is no clear winner among the algorithms they chose to study. In fact, all

of the algorithms perform well on some problems, but not so well on others. Therefore,

it is clear that, while comparing algorithms might yield the “best-case” algorithm for a

particular system where the solution is known or anticipated, the ability to determine

exactly which properties can be determined using a particular clustering algorithm more

generally remains to be investigated.

The recent focus on MD as a tool for exploring nonequilibrium processes has

driven the simulations to longer timescales than ever before [65, 66, 67, 27]. The data

gathered from such simulations can be extensive so clustering has a key role to play in

summarizing the simulation output without losing the key properties and behaviors of

interest. Since clustering algorithms are a form of unsupervised learning, where there

is no additional evidence or knowledge guiding the algorithm aside from the data itself,

and since experimental information may not be available at the spatial and temporal res-

olution of MD simulation, additional insight and understanding are needed to interpret

the clustered data. This study proposes that polymer models which exhibit simplified

and/or well-understood structural dynamics can be used to study clustering techniques,

and help to bridge the gap between using clustering to confirm established results and

using clustering to make theoretical predictions concerning the dynamics of biopoly-

mers.

5.2 Methods

5.2.1 Polymer-based Validation Framework

The following framework and procedure for using polymer models and simula-

tions to guide clustering based approaches to identify the descriptive states of all-atom

biomolecular simulations is used. See also Figure 5.1.

1. A polymer model is used to create a structural ensemble with well-characterized

properties such as identifiable metastable and transition states.
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2. The polymer model ensemble is clustered.

3. Various statistical properties are calculated for the resulting clusters.

4. The statistical properties of clusters known to correspond to metastable and tran-

sition states are identified.

5. MD simulations of a chosen biopolymer system are used to generate a structural

ensemble.

6. The MD ensemble is clustered.

7. The same statistical properties are calculated for the resulting clusters from the

MD ensemble.

8. Correlations between the statistics from steps 3 and 4 are used to characterize

the clusters from the MD ensemble as corresponding to metastable or transition

states.

Simple polymer models are focused on first with few interesting features, and

then incrementally features are added to create a range of polymer simulations. These

extended models are designed to possess densely populated metastable states and the

sparsely-populated transitions states that lie in between. We repeat the above process

for each model so that the analysis of the more complex models always builds upon the

analysis of the simpler models.

Two polymer models are developed where the pairwise dissimilarities can be

computed analytically and two polymer models where the pairwise dissimilarities can

be computed from analytically derived polymer structures. Also, one polymer model

is utilized where the pairwise dissimilarities can be computed from polymer structures

derived from simulation. Although these models are described in detail in the next

section, the following list summarizes all of the models used in this work:

• Linear Model - This analytic model is the simplest dynamical model considered

here. It does not exhibit any metastable or transition states.
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Figure 5.1: Clustering validation protocol. This diagram outlines the process of veri-
fying the results of a clustering algorithm applied to molecular dynamics simulations.
The model polymers have certain known properties (metastable states, transition states,
etc.) that are known beforehand due to model construction. The statistics and features of
clusters that describe these properties can then be used to inform the analysis of molec-
ular dynamics simulations. If the properties displayed by the polymer models are also
be present in the molecular dynamics simulations, then the statistics and features of the
clusters will also share similarities. Any clustering algorithm could be used, but here
the focus is on spectral clustering.
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• Sinusoid Model - This analytic model builds upon the linear model by the addi-

tion of metastable and transition states.

• Rotation Model - This model consists of polymer structures generated by chang-

ing the polymer link angles in well-behaved manner. It also does not exhibit any

metastable or transition states.

• Cyclical Model - This model extends the rotation model by revisiting the visited

conformational states several times over.

• Dynamic Model - This model consists of a helix-favoring polymer that “folds”

and then “unfolds” over the course of a simulation.

5.2.2 Polymer Models

Linear Model

The linear model is one of the simplest models of polymer dynamics that can be

constructed. It is not necessary to generate the actual structures since the dissimilarity

matrix, X, of the system can be determined analytically according to the following

equation:

X ∈ Rn×n where Xij = ‖i− j‖ (5.1)

with n = 1000 for the results presented here.

Sinusoid Model

The sinusoid model exhibits two of the key features of interest to MD simulation

studies: metastable and transition states. Like the linear model, the dissimilarity matrix

can be constructed analytically, so the generation and comparison of actual polymer
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structures is not necessary:

X ∈ Rn×n where

Xij =

∥∥∥∥∥
i−1∑
u=1

[
cos

(
6π(u− 1)

n− 2

)
+ z

]
−

j−1∑
v=1

[
cos

(
6π(v − 1)

n− 2

)
+ z

]∥∥∥∥∥
and z ∈ R, z > 1 (5.2)

with n = 1000 for the results presented in this paper.

The parameter z is added to the cosine functions in order to ensure that the

contributions to their respective sums are always positive values, thus ensuring that xij <

xi(j+1) for all i, j. If we allowed −1 ≤ z ≤ 1 then some temporally adjacent structures

would actually be moving toward the origin or stay in the same locations, rather than

continuing to evolve away from the origin. It turns out that z < −1 also produces

reasonable results, where the starting and ending structures reside in metastable states,

and two metastable states are created in the middle of the trajectory. However, since we

want to observe three metastable states in the middle of the trajectory, z is constrained

to be greater than one. Note also that this model asymptotically converges to a linear

model as z goes to infinity (or negative infinity), but this property serves no practical

purpose in this study. Therefore, z = 1.01 (a value slightly larger than 1) for all results

presented here.

The corresponding polymer “simulation” shows dynamics indicative of three

distinct metastable states and four transition states (one at the beginning, one at the end,

and two in-between the three metastable states). This model is similar to the linear

model because the simulation is always progressing into new areas of structural space.

However, the distance between successive frames is adjusted according to a nonlinear,

sinusoidal pattern. This produces the three distinct metastable states by compressing the

distances between frames in three regions, while the intervening regions, corresponding
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to the transition states, are produced by dilating the distances between successive frames

in these regions. These dynamics resemble diffusion on a glassy free-energy surface,

which is a feature purportedly common among disordered proteins [17].

Rotation Model

The rotation model is the first polymer model used in this study where 3D poly-

mer structures were constructed for comparison using RMSD. The model defines a poly-

mer structure by a set of consecutive links, each 3.88Å long, analogous to the Cα trace

of a protein. There is no steric exclusion, so links may overlap without penalty. The

angle between successive links is governed by the polar angle (φ) and the azimuthal an-

gle (θ) which range from [0, 2π) and [0, π), respectively. These two angles are initially

set to 0 degrees, resulting in a fully extended chain. The angles are then incremented

at each time step by a small amount (2ε and ε) until the chain completely winds into

a tight helical configuration. The number of links used was 10 (11 particles). Here,

ε = π/(n− 1) and n = 1000 for the results presented here‘.

This model is similar to the linear model presented earlier because the amount

of structural change between successive structures is constant. However, using RMSD

to compute dissimilarity between structures results in a nonlinear distortion of the poly-

mer similarity space. Therefore, this model can be utilized to determine if the use of

RMSD presents a challenge to clustering the structures in a manner that fully captures

the underlying linear model.

Cyclical Model

The cyclical model is an extension of the rotation model in which the φ and

θ angles are incremented until reaching their maximal values and then subsequently

decremented until reaching zero. This process is repeated three times so that the poly-

mer cycles through three phases of collapsing and extending. In this work, we utilize

ε = 6π/(n − 1) and n = 1000 for the cyclical polymer model. It is important to
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recognize that incrementing the angles φ and θ by 2ε and ε, respectively, beyond their

maximal values results in creating a left-handed “helix”, while the earlier conformations

simulated during collapse (also from incrementing the angles) were all right-handed.

The angle decrementing phase is necessary to avoid this problem, resulting in a model

where all structures are of the same handedness, similar to biopolymers. This ensures

that the structures sampled during the expansion phase of the model are the same as

those sampled during the collapse phase.

The cyclical model is similar to the linear model because the angle parame-

ters are adjusted in a linear fashion, but it has several interesting additional properties.

First, several false metastable states are created. This arises from the use of RMSD

for comparing the polymer structures, which again results in a nonlinear distortion of

the underlying linear process. Second, the model revisits these false states several times.

Therefore, this model is useful for determining how sensitive a clustering algorithm is to

the nonlinear distortion of RMSD and how these “false” states differ from the metastable

states in the sinusoid model.

Dynamic Model

The dynamic model is the bridge between the analytical models described above

and the all-atom MD simulations. The details of the model are fully described in [68]. In

the dynamic model, a polymer consists of a string of particles connected by rigid bond

constraints, analogous to the links of the previous analytical models. For the purposes

here, a link length, l, of 1.3 units is utilized. A soft pairwise potential is applied to

eliminate the overlap between the particles and a torsional potential is also applied to

the bonds is specified to favor a helical conformation. The periodicity of the helix,

hp = 5, to consist of five consecutive links. Therefore, the polar angle φ = 2π/hp

radians, which remains fixed throughout the simulation. The azimuthal angle, θ, is

allowed to vary, but has an equilibrium value of θ0 = arcsin(1.1rcut/(hp ∗ l)) radians,

where rcut = 6
√

2 is the distance cutoff for the neighbor-list. The particles are assigned
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initial velocities according to the Maxwell distribution. Newton’s equations of motion

are integrated using the leap frog method and velocity scaling is used on each time-step

in order to keep the average kinetic energy in the system at the desired level.

This model was utilized to perform both a freezing and melting simulation.

These two simulations demonstrate two commonly studied phenomena for proteins:

folding and unfolding. Initial particle positions are assigned to be either a random

coil or folded helix, respectively. The random coil is generated by uniformly sam-

pling the space of torsional angles and the folded helix is generated by setting the

torsional angles equal to θ0. The temperature is slowly annealed every 4000 steps fol-

lowing the first 10000 steps in the simulations according to the following relationship:

Tcurrent = γTprevious. For the freezing simulation, γ = 0.925, T0 = 6, and for the

melting simulation, γ = 1.0811, T0 = 0.1217. Each simulation is run for 210000 steps

and structures are saved every 400 steps after the initial 10000 steps, for a total of 500

structures per simulation. The polymer consists of 10 links (11 particles), similar to

the analytical models above, completing two complete helix turns in the folded state.

The integration time step size is set to 0.004, the size of the simulation box is set to 12

units along each side, and the torsional force constant is set to 5. This set of parame-

ter values, and the above annealing schedule allows the freezing simulation to quickly

fold the polymer without becoming trapped in local minima in the potential energy sur-

face (kinked helices). The final temperature of the melting simulation is approximately

equal to the starting temperature of the freezing simulation, and vice-versa. Therefore,

the folding/unfolding events occur at approximately the same number of steps into the

simulations. Finally, the two simulations were concatenated to create a single freezing-

melting simulation with a total of n = 1000 structures.

5.2.3 Spectral Clustering

For all of the work in this chapter, the spectral clustering approach outlined in

Section 3.2.1 is utilized. Unlike the prior chapters, the σi values are allowed to adapt to
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the data according to the method outlined in step 4 of the algorithm in Section 3.2.1.

5.2.4 Molecular Dynamics Simulations

The MD simulations used in this chapter were a subset of those described in

Section 2.2.1. In particular, only one of the 18ns simulations for the each of the GLFG,

FxFG, and SxSG proteins was used, and each of these was subsampled every 2ps for a

total of 9000 structures in each simulation. Please see Section 2.2.1 for the details on

the proteins simulated, protocols employed, and other parameters used to generate these

trajectories.

5.2.5 Clustering Protocol

Data from all the analytical models, the dynamic model simulation, and the MD

simulations were processed using spectral clustering for several values of k (the number

of clusters requested): 3, 5, 10, and 15. These values were chosen to examine how a

wide range of k can be used to reliably determine the built-in properties of each model.

A wide range of values such as these would likely need to be tried for any novel data

set since we normally would have no indication of what value of k to choose a priori.

Features extracted for each of the resulting partitions include: the scaling parameters

for each structure (σi), the number of structures in each cluster, the distribution of intra-

cluster RMSDs, and the distribution of scaling parameters for each cluster.

The polymer models and protein simulations studied here revealed that sampling

several values of k was needed to determine the presence of metastable and transition

states. In general, some of these states will become discernible at low k, but others

will require higher k in order to properly partition these states into separate clusters.

However, some other heuristics could be used to constrain the space of k values to

explore. For example, the need to gather adequate statistics will somewhat constrain

the search along k. If too many (or too few) clusters are requested, then the confidence

intervals of the various statistics for each cluster would begin to consistently overlap.
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Such heuristics were not employed in the work here since the approximate confidence

intervals calculated by the box plots showed sufficient statistical confidence for at least

one of the selected values of k for each model. However, it may be possible to utilize

such statistics to find a preferred value (or subset) of k, instead of manually examining a

range of values as is done here. Exploring the adequacy of this and other heuristics will

be the subject of future work.

5.3 Results

5.3.1 Linear Model

First, the performance of spectral clustering on the linear model is examined.

The “simulation” corresponding to the linear model possesses dynamics where the struc-

tural dissimilarity differs by a constant amount between successive frames, and the poly-

mer is always progressing into new areas of structure space. This can be observed in the

linear increase in RMSD from the initial structure as a function of simulation time as

shown in Figure 5.2A. This is also observed in the linear increase in RMSD as a function

of the difference in time between pairs of structures as shown in Figure 5.2C.

Spectral clustering is shown to behave as expected for the linear model. Figure

5.2 shows the structure assignment and cluster sizes for various values of k (the number

of clusters). Each cluster consists of a temporally contiguous set of structures that share

no similarity to the structures in the remaining clusters. The cluster sizes at the start and

end of the simulation are slightly lower, which occurs because of clustering start- and

end-effects.

The clusters at the beginning and end of the simulation are both less structurally

diverse as indicated by the narrow intra-cluster pairwise RMSD distributions for these

clusters shown in Figure 5.2. Both of these clusters also have a few structures with

rather large scaling parameters relative to other clusters and structures as indicated by

outliers in the intra-cluster scaling parameter, σ (box plots shown in Figure 5.2). These
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Figure 5.2: Linear model clustering results. Top: (A) Distance from initial structure,
(B) local scaling parameters and (C) pairwise distance between all structures. Bottom:
Cluster assignment and statistics for several values of k.
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results also indicate that the structures at the beginning and end of the simulation have

fewer close neighbors than structures in the middle of the simulation, which is confirmed

by plotting the scaling parameters as a function of time as shown in Figure 5.2B. The

effect is mild, and suggests that spectral clustering does not let the edge-effects of the

simulation override the importance of partitioning the structures into clusters that all

have a common implicit degree of similarity. The metastable or transition states at the

edges of the sampled conformation space are not unduly penalized nor overly favored

by spectral clustering.

5.3.2 Sinusoid Model

Next, the performance of spectral clustering on the sinusoid model is examined.

The sinusoid model shares one key property with the linear model: the polymer is al-

ways progressing into new areas of structure space. However, the distance between

successive structures is now varied so that at certain times in the simulation, succes-

sive structures are closer together, representing a dense region of highly similar struc-

tures akin to a metastable state. At other times in the simulation, successive structures

are further apart, representing a sparse region of dissimilar structures akin to a transi-

tion state. In particular, this model exhibits three metastable states with two transition

states in-between. The beginning and end of the simulation are both at points where

the structural distance between successive structures is quite high and are both char-

acteristic of a transition state as well. These properties can be observed in the RMSD

plots shown in Figures 5.3A and 5.3C. The centers of the metastable states are found

at t = 133, 500, 833, which is where the slope of the line describing RMSD from the

initial structure versus time is zero, and also where the lowest values of pairwise RMSD

are found (Figure 5.3C).

It is clear that the clustering algorithm is able to extract the metastable states from

the sinusoid model. Figure 5.3 shows that spectral clustering divides this simulation

into clusters of temporally contiguous structures and that these clusters contain similar
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Figure 5.3: Sinusoid model clustering results. Top: (A) Distance from initial structure,
(B) local scaling parameters and (C) pairwise distance between all structures. Bottom:
Cluster assignment and statistics for several values of k.
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numbers of structures. These results are almost identical to those obtained from the

linear model. Even the slight end-effects that were observed from the linear model are

also replicated, including the sharp increase in the scaling parameters at the beginning

and end of the simulation (see Figure 5.3B).

However, Figure 5.3 shows clear differences between the sinusoid model and the

linear model in terms of the intra-cluster RMSD and intra-cluster scaling parameters.

The intra-cluster RMSDs and scaling parameter values are quite low for the metastable

states. In particular, for the k = 15 case, clusters 3, 8, and 13 are in the center of

the metastable states and the distribution of scaling parameters for these three clus-

ters indicates that these structures are in a densely populated region of structure space.

Therefore, it is stipulated here that a metastable state is described by clusters with low

intra-cluster RMSD and low scaling parameter values. The transition states can also be

discerned from these statistics. The k = 10 case indicates that the structures in clusters

4 and 7 have large scaling parameter values. Therefore, it is also stipulated here that

large values are indicative of a sparsely populated region of the structure space or a

transition state.

These results are consistent across both the RMSD distributions and scaling pa-

rameters, but the results are more evident from the scaling parameters than the RMSD

distributions. For example, the distribution of scaling parameters is narrowly distributed

around the median for both the metastable and transition state clusters. This is not true

for the RMSD distributions, where the transition state clusters have RMSD distributions

that are widely distributed around their medians. A large RMSD distribution might indi-

cate that more clusters are needed (higher k) to properly partition the region covered by

the corresponding cluster, and such a distribution cannot guarantee that a cluster is not

a mixture of transition and metastable states. Therefore, the scaling parameter distribu-

tion of a cluster provides better evidence of whether that cluster belongs to a metastable

state, transition state, or something in-between. Examples of these in-between clusters

are 2, 4, 7, 9, 12, and 14 for the k = 15 case.
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5.3.3 Rotation Model

The results above correspond to analytic models in which the inter-structure dis-

tances are specified directly. Now, a polymer model where RMSD is used to calculate

the distances between generated structures is studied. The use of RMSD presents chal-

lenges for clustering based analysis. While RMSD is reported to be quite sensitive to

small structural differences and, therefore, performs well for distinguishing between

structures which are similar, it is less effective for comparing structures with relatively

large structural variation. Development of new approaches for structural comparison is

an active area of research, and a thorough comparison of these techniques is beyond the

scope of the work here. Nonetheless, it is important that clustering-based analysis be as

robust as possible to deficiencies in the underlying structural comparison whether it be

RMSD or another method.

The rotation model was utilized to determine the effect of the RMSD structural

comparison metric on clustering performance. The model consists of a set of consecu-

tive links, each approximately 3.88Å long, analogous to the Cα trace of a protein. Steric

exclusion is not considered in this model and the links may overlap with one another

without penalty. The angle between successive links is governed by the polar angle (φ)

and azimuthal angle (θ) which range from [0, 2π) and [0, π), respectively. These two an-

gles are initially set to 0 degrees, resulting in a fully extended chain. The angles are then

incremented on each time step by a small amount (2ε and ε) until the chain completely

winds into a tight helical configuration.

This linear walk through conformation space clearly highlights the nonlinear

effects of RMSD. Figures 5.4A and 5.4C show the RMSD from the initial (extended)

structure as a function of time and the pairwise RMSD between all structures in the

trajectory. Comparisons between (early) extended conformations result in relatively

high similarity as compared to (later) collapsed structures which differ by the same

distance in time and conformation angle space. Also, the most collapsed, tightly wound

structures exhibit a slight bias to consider most intermediately collapsed conformations
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to be equally similar even though more extended conformations, separated in time and

conformation angle space by the same amounts as the intermediate conformations, are

considered to be quite dissimilar.

Example structures are shown in Figure 5.5A for t = 330 and t = 660 which

correspond to unnaturally extended and collapsed configurations respectively. Struc-

tures along the helical continuum that correspond to physiologically realizable biopoly-

mers lay approximately between t = 400 and t = 600. It should be noted that this

region is still in danger of improper clustering due to RMSD bias, as indicated by Fig-

ure 5.4C, where the pairwise RMSDs to structures from earlier portions of trajectory are

still very small. Therefore, the rotation model confirms the observation that RMSD does

not possess the ability to discriminate effectively between certain kinds of structures.

Spectral clustering is able to effectively overcome these problems in two spe-

cific ways. First, while RMSD is unable to discriminate between extended structures

effectively, the metastable states of biopolymers would not typically be composed of

extended structures. Second, spectral clustering utilizes the distribution of structures in

localized regions to determine cluster membership, as illustrated by the Gaussian ker-

nel employed to transform RMSD into a similarity metric (see step 5 of the algorithm

in Section 3.2.1). Even if a biopolymer richly sampled extended conformations, as

might be the case for highly disordered systems, only those structures closest in struc-

tural similarity would be considered by the algorithm. Therefore, large and mid-range

RMSD differences that might bias many clustering algorithms will simply be ignored

by spectral clustering, effectively mitigating any problems that result from the RMSD

bias.

Upon applying spectral clustering, it is clear that the algorithm is only mildly

sensitive to the nonlinear effects of RMSD. Figure 5.4 shows that spectral clustering

divides this simulation into clusters of temporally contiguous structures and that these

clusters contain similar numbers of structures. This follows the same trend as the linear

and sinusoid models, which is encouraging since this model also exhibits a property

shared with these models of always progressing into new areas of structure space. The
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Figure 5.4: Rotation model clustering results.Top: (A) Distance from initial structure,
(B) local scaling parameters and (C) pairwise distance between all structures. Bottom:
Cluster assignment and statistics for several values of k.
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Figure 5.5: Sampled structures from two polymer models. (A) The Rotation Model
displays a controlled collapse from a completely extended polymer (t = 1) to a tightly
wound helix (t = 1000). (B) The Dynamic Model is a simulated polymer that starts from
a random coil configuration and then “folds” into a helix (t = 500) as the temperature
of the simulations is lowered. The temperature is then raised for the remainder the of
the simulation allowing the polymer to “unfold” back to the random coil (t = 1000)
conformation.
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scaling parameters in Figure 5.4B indicate that the bias is strongest for abnormally ex-

tended structures before t = 300, where the scaling parameter fluctuates quickly over

time.

The intra-cluster RMSD plots for this model, shown in Figure 5.4, verify that

the structural diversity in the physiologically relevant region (approximately t = 400 to

t = 600) is still quite large even though it consists of approximately only 200 structures.

For instance, for the k = 3 case, cluster 2 has the broadest distribution of RMSD values.

Increasing k confirms that the diversity of structures is at least on par with the remainder

of the simulation, so one can be confident that this region provides a good representation

of spectral clustering performance for helical structures.

The intra-cluster scaling parameter distributions, shown in Figure 5.4, make it

clear that this region is largely unaffected by any RMSD bias. For the k = 3 case, cluster

1 covers the region of extended structures, cluster 2 covers the region of intermediate

structures, and cluster 3 covers the region of collapsed structures. Only cluster 1 shows

an appreciable bias, which is indicated by the large spread in the intra-cluster scaling

parameter distribution. Cluster 3, shows a slight bias as well. However cluster 2 shows

almost no bias at all, with a very tight distribution around the median, similar to the

results for the linear model. These results are also maintained across the k = 5, 10, and

15 cases, where the clusters in the central, physically realizable region show little spread

in their intra-cluster scaling parameters distributions. Instead, the bias becomes only

mildly evident for the physiologically abnormal structures at both ends of the trajectory.

The potential problems observed from using RMSD on the most extended struc-

tures in the trajectory are effectively overcome by spectral clustering. This can be ob-

served from the results for the rotation model, where the structural diversity and total

number of structures for clusters in the middle, most relevant portion of the trajectory

are on par with the remaining clusters. However, unlike the remaining clusters, the

middle clusters did not show any appreciable bias due to the use of RMSD. Therefore,

the conclusion here is that the ability of spectral clustering to utilize localized regions

of structure space, and ignore more distant regions and structures, can overcome the
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known problems with using RMSD to compare conformations.

5.3.4 Cyclical Model

The results above were all gathered for models where the simulation is always

progressing to new areas of structure space, but biopolymers often do not exhibit this

behavior. Instead, most biopolymers, especially highly disordered systems, will revisit

certain areas of structure space. The cyclical model is intended to model this process

by building on top of the rotation model. This model simply undergoes the same linear

change in angle space as the rotation model, but the polymer is reextended following

collapse. This process is repeated three times in order to revisit the same region of

structure space during the course of the simulation. This revisiting of earlier regions of

structure space can be observed in the RMSD from the initial structure as a function of

time shown in Figure 5.6A and the pairwise RMSD for all structures shown in Figure

5.6C.

During the initial collapse of the polymer, the clusters are temporally contiguous

and contain approximately the same number of structures, as shown in Figure 5.6. This

is true for all values of k. These clusters are then re-visited in reverse order during the

subsequent phase where the polymer returns to an extended state. The same pattern is

observed for the remaining two collapse-extend cycles.

The intra-cluster RMSD distributions shown in Figure 5.6 indicate that the im-

portant set of structures identified from the rotation model maintain the same properties

as in the cyclical model. The most structurally diverse cluster (the one with the broadest

RMSD distribution) is number 2 for the k = 3 case. This cluster occurs in the region

of the trajectory that corresponds to the physiologically relevant region that the cyclical

model shares with the rotation model. Clusters 2 and 3 for the k = 5 case are also

found in this region, and have the largest structural diversity as well. The effect is less

clear for the k = 5 and k = 15 case, because the clusters covering regions in the fully

collapsed state are also highly insensitive to RMSD. Again, this result is consistent with
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Figure 5.6: Cyclical model clustering results. Top: (A) Distance from initial structure,
(B) local scaling parameters and (C) pairwise distance between all structures. Bottom:
Cluster assignment and statistics for several values of k.
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the rotation model, and can be verified by observing the smoother changes in the struc-

tural scaling parameters in both of these regions compared to the extended regions (see

Figure 5.6B.)

The intra-cluster scaling parameter values in Figure 5.6 confirm these results as

well. Cluster 3 for the k = 3 case has the broadest distribution of scaling parameter

values and covers the structurally extended regions of the trajectory. Clusters 4 and

5 do likewise for the k = 5 case, as do clusters 5, 7, and 10 for the k = 10 case,

and clusters 8, 11, and 15 for the k = 15 case. Clusters 6 and 13 for the k = 15

case are also slightly broadened, and are located in regions temporally and structurally

adjacent to the extended regions. Cluster 2 for the k = 3 case and clusters 2 and 3

for the k = 5 case, all have narrow scaling parameter distributions and cover regions

corresponding to the intermediate helical structures. For the k = 10 and k = 15 cases,

clusters not covering the extended regions (listed above) have relatively narrow scaling

parameter distributions, indicative of relatively little RMSD bias even for extremely

collapsed regions.

5.3.5 Dynamic Model

The above models are completely deterministic. Therefore, a dynamic model

is now considered which also repeatedly transitions between fully extended and fully

collapsed configurations but whose dynamics are stochastic like MD simulations of

biopolymers. A simple potential-energy function is utilized which favors a particular

orientation of the φ and θ angles, combined with a soft-core pairwise repulsive interac-

tion so that the lowest-energy conformation is a helical structure. A temperature bath is

applied to the system and we anneal the temperature over time to produce a simulation

that initially models an extended coil at high temperature which then “folds” into the

final helical conformation at low temperature. As long as the temperature is annealed

slowly, the system reliably folds into the native helix conformation. The annealing

schedule is then reversed to “unfold” the polymer, allowing it to return to the extended
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state. Figure 5.5B shows example structures at different points in time from this second

phase of the annealing process.

The simulation exhibits one clearly defined metastable state: the helical con-

formation that (by construction) is present in the middle of the trajectory (t ≈ 500).

Figure 5.7A confirms that this state is reached as the RMSD from the native state ap-

proaches zero at t ≈ 500. However, it is also the case that the initial, folding transition is

much more gradual than the unfolding transition. While there is a slightly abrupt struc-

tural transition at t ≈ 180, the remaining portion of this folding transition smoothly

approaches the folded states. This transition occurs because the forces exerted by the

potential function begin to overcome the effect of the temperature bath at this point in

the simulation, but the soft-core interactions still allow the helix to be quite flexible and

dynamic, similar to a weak spring. The unfolding transition does not display this fold-

ing intermediate, but instead abruptly shifts from a collapsed coil to an extended coil at

t ≈ 800. The pairwise RMSD for the simulation shown in Figure 5.7C, and the structure

scaling parameters shown in Figure 5.7B also confirm this pattern.

Spectral clustering clearly identifies the metastable, folded state of the polymer,

and identifies the folding intermediate state as structurally distinct from the folded and

unfolded states. The clustering assignment in Figure 5.7 indicates that, as k is increased,

the structures associated with the intermediate state segregate into separate clusters. At

k = 3, cluster 3 covers the extended state, cluster 2 covers the folded state, and cluster

1 covers intermediate structures for both folding and unfolding. However, at k = 5,

cluster 1 populates the region of the folding intermediate but is not well-populated by

structures from the unfolding portion of the simulation. By increasing k to 15, clusters

2, 3, and 4 are almost exclusively populated by the folding intermediate. Clusters as-

signed to the folded state become slightly more populated (with more total structures)

than the intermediate states with increasing k, as shown in Figure 5.7. For k = 3 the

cluster assigned to the folded state, cluster 2, was the least populated state. However,

the population of the folded state cluster, 3 for k = 5, was above the intermediate state

cluster (2 and 4) populations. The same trend is observed for the k = 10 and k = 15
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Figure 5.7: Dynamic model clustering results. Top: (A) Distance from folded structure,
(B) local scaling parameters and (C) pairwise distance between all structures. Bottom:
Cluster assignment and statistics for several values of k.
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cases. More importantly, the intra-cluster scaling parameter distributions in Figure 5.7

indicate that the most structurally homogeneous clusters contain structures in or close to

the folded state because the distributions for these clusters are much more narrow than

clusters corresponding to extended states. So, these distributions indicate that the num-

ber of structures assigned to a cluster is not indicative of whether a cluster corresponds

to a metastable state since, for the k = 15 case, cluster 9 is just as heavily populated as

cluster 15. The same results can be observed in the intra-cluster RMSD distributions.

The transition states are more difficult to observe in this model, but there are

indicators of the transition ensembles for the k = 15 case in clusters 3 and 14, which

both have more narrow distributions than one would expect in the temporal regimes that

they cover. Cluster 3 heavily covers the folding intermediate state right at the t ≈ 180

transition, and cluster 14 covers the extended state just after the abrupt transition at

t ≈ 800. Since this transition is so abrupt, there isn’t sufficient sampling to capture the

transition within its own cluster. However, a sharp jump in the median scaling parameter

values between temporally adjacent clusters, such as between clusters 8 and 9 for k =

10 and between clusters 12 and 13 for k = 15, is a clear indicator of a significant

structural transition. These results are in agreement with the sinusoid model as well

since such sharp jumps in the median scaling parameters for temporally adjacent clusters

are observed there too, even though the sampling was sufficient to create unique clusters

for the transition states in that model as well as the metastable states. Therefore, we can

see evidence of the transition states, though these states are not easily identified without

combining the results of the cluster assignments and scaling parameters in Figure 5.7.

5.3.6 GLFG Simulation

The clustering protocol is now applied to an 18ns simulation of GLFG, a collapsed-

coil FG-nucleoporin. The cluster assignments and scaling parameter distributions for

k = 10 and k = 15 are investigated first, since these were the most informative cases

for the polymer models. The smaller values of k = 3 and k = 5 were also investigated
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and were consistent with results for k = 10 and k = 15, but were not as informative as

the results for these larger values of k (a property that was also observed for the polymer

models).

GLFG undergoes significant structural changes over the duration of the sim-

ulation. The differences between the structures can be difficult to describe based on

observations of snapshots of the system, shown in Figure 5.8, since the structures all

look equally dissimilar to one-another. However, the RMSD from the initial structure as

a function of time shown in Figure 5.9A indicates significant structural divergence. The

pairwise RMSD in Figure 5.9C additionally reveals that several metastable regions are

present, but the dynamics in some regions (t ≈ 6000-13000) are quite complex, with

the simulation potentially revisiting previously explored regions of conformation space.

Scaling parameter values shown in Figure 5.9B, indicate that the local structural density

is quite sensitive to these metastable/transition regions.

The cluster assignments in Figure 5.9 indicate that this protein continues to move

into new structural regions over time, similar to many of the polymer models. An in-

teresting structural transition occurs at around 6ns, observed in the pairwise RMSD plot

where there is a sharp increase in RMSD from structures explored previously in time.

This is the only part of the simulation that deviates from this continual structural evo-

lution. In particular, for the k = 10 case the simulation begins to explore cluster 7 at

around 6ns, a little before settling into cluster 6 for a few nanoseconds. This cluster is

revisited again at around 10ns, eventually making the transition to cluster 8 at around

12ns. The same pattern can be observed in the k = 15 data, where clusters 9 and

10 more clearly indicate the intermediate transition state between these two metastable

states. Another distinct structural transition occurs at around 15ns as well. This final 3ns

of the simulation is consistently partitioned into a single cluster for all examined values

of k.

The intra-cluster scaling parameter distributions in Figure 5.9 validate these

claims where clusters 1, 3, 6, 8, and 10 for k = 10 have the lowest median values

compared to their temporal neighbors, indicating that these are metastable states. The
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Figure 5.8: Representative structures from the FG-Nup simulations. Structures shown
are representatives from clusters with the smallest (σsmall) and largest (σlarge) median
scaling parameters obtained from applying spectral clustering with k = 15. Represen-
tatives for each cluster were obtained by selecting the structure which had the smallest
sum of intracluster distances. These structures clearly show that smaller scaling parame-
ters are associated with collapsed metastable states for all three FG-Nups studied, while
large scaling parameters are associated with extended transition states.
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Figure 5.9: GLFG clustering results. Top: (A) Distance from initial structure, (B) local
scaling parameters and (C) pairwise distance between all structures. Bottom: Cluster
assignment and statistics for several values of k.
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same property is observed for the clusters subtending the final 3ns of the simulation

across all values of k, indicating that these clusters correspond to a metastable state

as well. This is the same pattern observed in the dynamic model where transition and

metastable states can be determined by comparing the scaling parameter distributions

for clusters that are adjacent in time. The revisited transition state observed in the clus-

tering assignment is explicitly assigned its own clusters (9, 10, and 11) in the k = 15

case, and the higher scaling parameters for these three clusters make it clear that this is

indeed a transition state. The radius of gyration distributions in Figure 5.10A indicate

that two of these clusters (9 and 10) are more extended than the surrounding clusters

(8 and 12). However, it is also clear that cluster 11 contains very collapsed structures

and is relatively short-lived. Therefore, cluster 11 probably represents a set of collapsed

conformations which are energetically unfavorable compared to clusters 8 and 12 which

are both more heavily populated.

Overall, the scaling parameters for each cluster are distributed around their me-

dians in a similar manner across all clusters, which is similar to the Linear and Cyclical

models, and indicate that the metastable states are representative of shallow minima on

the free-energy surface. The values of the scaling parameters are relatively small, indi-

cating that both metastable and transition states are populated with collapsed-coil con-

figurations. The representative structures from the clusters with the highest and lowest

median scaling parameters (k = 15) shown in Figure 5.8, confirm this result. However,

one cluster (11) is composed of highly collapsed structures in terms of radius of gyration

(Figure 5.10A) even though it is part of a transition state ensemble based on observations

of small shifts in the median scaling parameters of neighboring clusters. Even though

these shifts are small, some reasonable statistical confidence in these results is present

because the confidence intervals (shown by the notches in the boxplots) between these

neighboring clusters are not overlapping.
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5.3.7 FxFG Simulation

The FxFG simulation, which undergoes even more significant structural changes

than GLFG, was analyzed using the same protocol as the GLFG simulation. The dif-

ferences between structures are easy to characterize based on observations of snapshots

of the system, shown in Figure 5.8. This is primarily because FxFG samples extended

conformations that form patterns of long-range contacts that are often discernible from

the snapshots. The RMSD from the initial structure as a function of time shown in

Figure 5.11A indicates significant structural divergence, even greater than what was

observed for GLFG. The pairwise RMSD in Figure 5.11C additionally reveals that sev-

eral metastable regions are present, but that the dynamics are even more complex than

GLFG, with the simulation clearly revisiting previously explored regions of conforma-

tion space. The scaling parameters values shown in Figure 5.11B indicate that the local

density is different within these metastable/transition regions.

FxFG appears to mostly move into new structural regions over the course of the

simulation similar to GLFG, but also seems to revisit previous conformational states

more often. The cluster assignments in Figure 5.11 indicate that this is true since for

k = 10 cluster 5 is heavily revisited during the simulation. Clusters 3, 4, and 7 also

possess this property but to a lesser degree. The results for k = 15 make this even

more clear, with clusters 7, 8, and 11 occupying the same regions in time as the revisited

clusters from the k = 10 case. However, the cluster assignments alone do not indicate

which clusters are potential metastable or transition states.

Again, one needs to consider the differences in the intra-cluster scaling param-

eter distributions between temporally adjacent clusters in order to characterize clusters

as corresponding to metastable or transition states. These distributions are shown in

Figure 5.11. The most likely candidates for metastable states for the k = 10 case are

clusters 2, 7, and 10 due to their low medians. Clusters 2 and 10 both have narrow

distributions, clearly indicative of metastable states. However, cluster 7 is not quite as

clear because the distribution is broad, opening the possibility that temporally adjacent
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Figure 5.11: FXFG clustering results. Top: (A) Distance from initial structure, (B) local
scaling parameters and (C) pairwise distance between all structures. Bottom: Cluster
assignment and statistics for several values of k.
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clusters 6, 8, and possibly even 9 could also describe this metastable state. The results

for k = 15 resolve this ambiguity by splitting this region into two different clusters,

10 and 11. The sharp increase in the median, and the broad distribution for cluster 11

indicate that this region corresponds to a transition state, and that cluster 10 is a prelim-

inary move towards this transition. Instead, cluster 9 with its low median, and narrow

distribution, displays all of the properties of a metastable state in this regime. These

results are congruent with the analysis for the dynamic model where adequate sampling

combined with results for various values of k is needed in order to begin extracting tran-

sition states that occupy their own distinct clusters. The structures in Figure 5.8 indicate

that more extended conformations are often associated with larger scaling parameters,

and a more thorough comparison with the cluster radius of gyration (Rg) distributions

in Figure 5.10B indicates that this is definitely the case for this protein.

5.3.8 SxSG Simulation

Finally, the simulation of SxSG is examined, which is even more flexible than

the wild type FxFG. This is clearly seen in Figure 5.12 where the RMSD value from

the initial structure quickly diverges and levels off. This indicates that this simulation is

devoid of metastable states. The pairwise RMSD values in Figure 5.12C indicate that

there is not only a wide variation in the structural ensemble, but that it is difficult to

identify when particular structural regions are revisited. The scaling parameters shown

in Figure 5.12B vary consistently over time in an almost cyclical manner. This could

indicate rapid transitions into and out of metastable states, but we need to look at the

clustering assignments to know this for certain.

The clustering assignments for SxSG are shown in Figure 5.12. The k = 10 case

indicates that the simulation is devoid of any metastable states since almost any chosen

1ns time window from the simulation spans all 10 clusters. The k = 15 case slightly

diverges from this result in that clusters 1, 2, 14 and 15 are more sparsely populated.

However, when comparing the scaling parameter distributions for these clusters in Fig-
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Figure 5.12: SXSG clustering results. Top: (A) Distance from initial structure, (B) local
scaling parameters and (C) pairwise distance between all structures. Bottom: Cluster
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ure 5.12, it is clear that these sparsely populated clusters differ only slightly from the

remaining clusters. The radius of gyration distributions in Figure 5.10C indicate that

these clusters consist of the most compact conformations visited by the simulation. This

result is also not due the end-effects like those observed in the linear model because

none of these clusters is heavily populated by structures at the beginning or end of the

simulation. The large overall values of the scaling parameters indicate that all clusters

are consistent with extended coil conformations.

5.4 Conclusions

A framework is developed here for validating the performance and utility of clus-

tering algorithms for studying molecular biopolymer simulations. The key contribution

of this framework is the development and use of several analytic and dynamic polymer

models which exhibit well-behaved dynamics including: metastable states, transition

states, helical structures, and stochastic dynamics. These models provide an informative

framework for testing the ability of spectral clustering, a promising clustering algorithm

that has received much attention recently in the machine learning community, to par-

tition the polymer model structural ensembles into clusters whose statistical properties

reveal the underlying metastable and transition state ensembles. The models have also

been used to address potential problems that arise due to RMSD bias and shown there is

little adverse effect for spectral clustering. In all of the polymer models, spectral clus-

tering found clusters that corresponded to metastable states, most clearly recognized by

comparing the distributions of intra-cluster similarity scaling parameters, σ, between

temporally adjacent clusters. Transition states were sometimes not assigned to clusters

due to the sparse sampling of these states in the ensembles.

These methods are also utilized to determine the metastable and transition states

for simulations of several FG-Nups, and found that the statistical properties of the result-

ing clusters allowed similar comparisons and predictions to be made for these systems

as well. The metastable states could often be predicted quite easily, while the transi-
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tion states were again somewhat difficult to determine due to under-sampling. While

experimental data for these proteins at the level of detail needed for direct comparison

is not available, the results for the three proteins studied here are in agreement with past

experimental and computational studies on these proteins [8, 21]. In particular, GLFG

is a collapsed coil that slowly explores the free-energy landscape by climbing relatively

small barriers between shallow metastable states. FxFG is an extended coil that often

revisits previously explored collapsed metastable states and utilizes extended conforma-

tions to transition between these states. SxSG is an extended coil that never explores

collapsed conformations.

Clustering has been widely used to partition structural ensembles obtained from

MD simulations, but few studies have been performed to rigorously determine the utility

of various clustering methods for studying MD simulations. The framework provides

a novel approach to address this concern that is computationally efficient and highly

predictive of success or failure for individual algorithms. While most of the polymer

models in this study focused on unfolded and helical conformations, novel polymer

models might be developed in the future for assessing simulations involving loop and

sheet conformations as well. The framework could also be used to compare different

clustering algorithms to better understand their relative strengths and weaknesses. Fi-

nally, it is hoped that these results can be brought to bear on simulations of previously

unstudied biopolymer systems where predictions can be made concerning metastable

and transition states that can be subsequently verified using experimental techniques.



Chapter 6

Validation of Dimensionality

Estimators for Protein Simulations

Using Polymer Models

Chapter 4 pointed out that dimensionality reduction techniques offer a unique

way to visualize the conformation landscape, and can even be used to visually confirm

the convergence of a set of independent replicates which corroborates the results of the

clustering methodology discussed in Chapter 3. However, the true dimensionality of the

space traversed by disordered proteins is often of much higher dimensionality than the

two or three dimensions that can be visualized using these techniques. Hence, a more

useful measure of the complexity of the protein’s motion would be the dimensionality of

the conformation space. To this end, various dimensionality estimation techniques have

been developed which attempt to address this very problem, but their utility for protein

simulation studies has not been validated. The previous chapter introduced the idea

of using polymer models for validating clustering methodologies for MD simulations.

This method can readily be extended to validate other tools for studying MD simulations

which operate on protein structural dynamics

In this chapter, a polymer-based framework similar to the one proposed in the

133
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previous chapter is developed to validate the use of dimensionality estimation tech-

niques for the study of unfolded protein dynamics. First, several techniques in the

machine learning and mathematical literature for estimating intrinsic dimensionality

are reviewed. One of these methods is chosen that has seems to perform well. How-

ever, some minor changes to the algorithm are required to study some of the simulation

properties worth capturing. Next, several polymer models are developed that possess

clearly defined dynamics and dimensionality by construction, and are used to validate

the dimensionality estimation algorithm. In addition, some techniques for dealing with

inherent difficulties in the data, noise and relative motions, are developed. The dimen-

sionality estimation algorithm is applied to the polymer models, and the effectiveness

of the algorithm is examined in light of the underlying properties of the polymer mod-

els. The results of the polymer studies help guide dimensionality analysis of extensive

simulations of two IDPs and two unfolded NFPs in order to test the hypothesis that

IDP motion should remain of relatively high dimensionality compared to unfolded NFP

motion, which should show a decline in dimensionality over time. The proteins and sim-

ulation protocol are discussed, as well as the protocol for processing the resulting the

trajectories. The dimensionality estimation algorithm and a few other standard metrics

from Chapter 2 are applied to the trajectories and the results from the polymer data are

used to calibrate the results for the trajectories generated here. The properties of the IDP

simulations and NFPs are contrasted based on the results, and the original hypothesis

regarding IDP and NFP dynamical differences is revisited.

6.1 Background

Dimensionality reduction has been applied to molecular simulations in many

past studies. Given that protein simulations are inherently non-linear systems of high

dimensionality, this could be considered somewhat surprising. Indeed, the 2D maps of

the conformation landscape produced in most studies exhibit difficulties in mapping very

distinct conformations onto different portions of the landscape, making such approaches
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limited to extremely small peptides [69].

On the other hand, dimensionality estimation has the potential to be a great aid to

dimensionality reduction methods. If the dimensionality of the conformation landscape

under study was known, then a projection onto the appropriate number of component

dimensions could be constructed which, while not visualizeable, would produce a map-

ping which would be less likely to encounter the difficulties mentioned above. Also, the

dimensionality estimates themselves might be able to say something important about the

conformation landscapes in question, allowing different proteins to be classified based

on their intrinsic dimensionality.

6.1.1 Dimensionality Estimation

The field of dimensionality estimation has roots in the study of fractals: systems

whose inherent properties give rise to the interesting theoretical property where the sys-

tem lays “in-between” two integral dimension, i.e. fractional or fractal dimensionality.

The Koch snowflake is a classic example of a mathematical curve which has fractal di-

mensionality. The curve is generated by starting with an equilateral triangle and then

applying the following three steps to each segment in a recursive fashion:

1. Divide the segment into three equal-length parts.

2. Draw an equilateral triangle that has the middle part as the base, pointing out-

wards.

3. Remove the line at the base of the new triangle (middle segment from step 1).

As this process is repeated, it is clear to see that this process will result in a closed loop

of line segments that is infinite in length. After each iteration, the number of segments

increases by four-fold, each one-third the length of the length of the segments from the

previous iteration. Therefore, the total length increases by four-thirds, even though the

curve appears to the eye to still be composed of a closed loop because the segments

become too small to differentiate without zooming in on some portion of the curve. No
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matter how close one zooms in to view the curve, it appears to continuously repeat the

same self-similar “snowflake” pattern. Despite having infinite length, the interior area of

the curve is finite (eight-fifths the area of the original triangle). The scaling of the length

of the curve therefore doesn’t follow the same properties of a simple one-dimensional

curve, actually giving the curve a fractal dimensionality of 4/ log 3 ≈ 1.26.

Many methods have been developed for calculating the dimensionality of various

processes from data samples generated by some system of interest. While the primary

systems of interest for these techniques may have been fractals since analytical solutions

were difficult or impossible to obtain, interest in the estimation of the dimensionality of

any process (whether of fractal or integral dimensionality) via sampling has grown as

well [70]. Perhaps the most commonly employed methods are actually methods de-

signed to reduce the dimensionality of data. However, the global solution approach

of methods like PCA, multidimensional scaling, and non-linear dimensionality reduc-

tion methods often do not work well in practice unless the system of interest exhibits a

constant integral dimensionality without noise. Additional techniques based on nearest-

neighbors have been developed which utilize various properties of the data to estimate

dimensionality. Costa and Hero utilize the scaling properties of graph entropy versus

dimensionality [71] and Kegl utilizes an approximate solution to the theoretically accu-

rate packing dimension [72]. Some techniques have been developed which, with some

small modifications, can be applied to local areas of the system manifold, and noise can

be handled somewhat more independently than in the global projection methods men-

tioned above. For example, the correlation dimension [73] has been extended to use

an empirical technique that can be applied locally by leveraging the scaling properties

of samples drawn from a uniform hypercube [74]. Levina and Bickel utilize maxi-

mum likelihood based on the scaling of nearest-neighbor distances [75]. This list of

dimensionality estimation methods is by no means exhaustive, but serves to illustrate

the importance of dimensionality estimation and the wide variation in the algorithms

and techniques employed.
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6.1.2 Protein Dimensionality

The interest in the dimensionality of protein dynamics stems from the intuitive

idea that NFPs, when folded, will continually retain the same conformation. In essence,

folded protein dynamics exhibit a dimensionality of zero because they subsist in one

singular point in the high-dimensional conformation space. If the protein was heated,

and parts of the tertiary or secondary structure of the protein become perturbed, then

the resulting motions would cause the protein to explore new portions of the conforma-

tion space. Importantly, the dimensionality of the motion in this case would increase

as the protein fully explores newly accessible regions of the conformation space. The

more unfolded the protein becomes, then the higher the dimensionality of the motion.

Of course, other transient, non-native structures might form, and, while it might take a

while for the protein to explore this new space fully, it is highly improbable that these

structural ensembles would be of lower dimensionality than the folded state. In contrast,

IDPs would never exhibit zero-dimensional (folded) dynamics since no native structure

exists. IDPs which form some regular contacts between residues or unique, transient

structures would then naturally be of lower dimensionality to their completely disor-

dered counterparts. Even these collapsed IDPs should exhibit higher dimensionality

motion than an NFP of equivalent length in terms of the number of residues. Therefore,

dimensionality of protein dynamics could potentially be used to distinguish between

different kinds of IDPs or between IDPs and NFPs.

While it is clear that dimensionality estimation could be great interest as a met-

ric for comparing the dynamics of different classes of proteins, there is still a need to

determine if dimensionality techniques are actually capable of extracting the dimen-

sionality of the underlying dynamics. In particular, given that there are many different

algorithms for estimating the dimensionality of protein dynamics, a framework for as-

sessing and comparing the utility of various dimensionality algorithms is needed. To

this end, a novel series of polymer models are developed here which display various dy-

namic characteristics that vary with dimensionality. Importantly, the dimensionality of



138

the polymers is known, and can explain the behavior and performance of an algorithm

in ways that can be mapped directly to the results obtained from applying the estimation

algorithm to MD simulation data. This approach is unique because the polymers effec-

tively bridge the gap between the small systems used to initially calibrate the estimators

during their formulation and the large, complex, and inherently nonlinear systems they

target, such as MD simulations.

The algorithm of choice for this study will be the maximum likelihood estima-

tor (MLE) of Levina and Bickel [75] with some extensions described in detail in the

next section to address some concerns that arise when working with MD data. In par-

ticular, as proteins form transient contacts and explore new conformational states, the

dimensionality of the motion may fluctuate over time. Therefore, the dimensionality of

the conformation manifold in the local region surrounding each structure is calculated

instead of averaging the estimators across the entire manifold. In addition, since noisy

data is known to be particularly difficult for dimensionality estimators and MD simula-

tions are inherently noisy, trajectory smoothing techniques are also utilized to see if the

noise can be mitigated independent of alterations to the estimation algorithm.

6.2 Methods

6.2.1 Maximum Likelihood Estimator of Dimensionality

The maximum likelihood estimator is a powerful methodology for estimating

the dimensionality of a dataset [75]. Application of this method results in an estimate of

the intrinsic (or minimum) number of discrete variables needed to effectively generate

or model the data in question, regardless of the analytical or numeric form of the un-

derlying model. The intrinsic dimension can be significantly smaller than the number

of dimensions of the space in which the data has been transformed or embedded into,

known as the ambient space, and the corresponding number of dimensions known as the

ambient dimensionality. Proper estimation of the intrinsic dimension of a dataset can
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allow for more efficient data compression, guide the application dimensionality reduc-

tion methods, and provide insight into the functional characteristics of the process that

generated the data.

While a number of other techniques utilize geometric techniques similar to those

employed by the MLE, the use of a likelihood function makes the estimates quite accu-

rate relative to previous approaches and computationally quite efficient. The calculation

of the nearest-neighbors for each data point is first required, and is the computational

bottleneck for this approach where an estimate of the dimensionality, m̂Ri(x), for each

data point, x, is calculated as follows:

m̂Ri(x) =

 1

N(Ri, x)

N(Ri,x)∑
j=1

log
Ri

Tj(x)

−1 (6.1)

where N(Ri, x) is the function which calculates the number of points around point x

that lay within the surrounding sphere of radius Ri, and Tj(x) is the distance from point

x to its jth nearest neighboring point. Another formulation that works well in practice

is the following:

m̂ki(x) =

[
1

ki − 1

ki−1∑
j=1

log
Tki(x)

Tj(x)

]−1
(6.2)

where m̂ki(x) is the dimensionality estimate for the region surrounding point x, with the

kith nearest neighboring point used to determine the radius of the sphere, Tki(x), used

in this formulation. In either formulation, the estimates must be recalculated for many

different values of the parameters which determine the sizes of the surrounding spheres

(Ri or ki) since there is currently no best-practice method for determining the optimal

value, similar to the cutoff radius or k parameters of clustering algorithms. Nevertheless,

a final estimate for each point can be determined by averaging over a range of small to

moderate values of these parameters:

m̂R(x) =
1

n

n∑
i=1

m̂Ri(x) (6.3)
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or

m̂k(x) =
1

n

n∑
i=1

m̂ki(x) (6.4)

where n is the number of parameter values chosen.

A solution similar to that suggested by MacKay and Ghahramani is adopted

here, who suggest to average the inverses of these estimates to obtain better solutions

for small R and k [76]:

m̂R(x)−1 =

∑n
i=1

∑N(Ri,x)
j=1 log Ri

Tj(x)∑n
i=1N(Ri, x)

(6.5)

or

m̂k(x)−1 =

∑n
i=1

∑ki−1
j=1 log

Tki (x)

Tj(x)∑n
i=1(ki − 1)

(6.6)

This technique differs slightly from that of MacKay and Ghahramani because

the estimate for each point, x, is obtained by first aggregating over all ki or Ri, instead

of first aggregating over all points. Therefore, the approach taken here presents a local

estimator of dimensionality instead of a global one. The harmonic mean of the point

estimates can be taken to obtain a global estimate if so desired. This approach is sug-

gested by Haro et al.[62, 63] for manifolds of mixed density and dimensionality, albeit

derived independently here. A smoothing approach is taken in the sections that follow,

where the harmonic mean of estimates within a sliding time window is used in order to

obtain reliable statistics. Additionally, when computing the nearest neighbors between

all points, it is often prohibitive to store the entire set of distances, making the radius-

based estimator m̂R(x) difficult to calculate. Instead, the set of kmax closest distances

is kept in practice, making m̂ki(x) the more natural choice. For all analyses presented

here, k = [2, 3, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024], so kmax = 1024.
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6.2.2 Polymer Models

The following polymers are used to test the effectiveness of the dimensional-

ity estimator for working with polymer dynamics. The performance of the estimator

algorithm can be used to determine which properties of the polymer chains can be ac-

curately predicted from the dimensionality estimates. If similar properties are observed

for dimensionality estimates obtained from MD simulations, then there is at least some

confidence that the same dynamical features are present in the simulations that were

present in the polymer models.

Semirigid Helix

While several polymer models exist which are suitable for the framework [77],

a simple model similar to the freely-jointed chain [78] provides the necessary properties

with only one free parameter. This model, called the semirigid helix, consists of a

set of l virtual bond segments which are all a = 3.8Å in length, which is the typical

distance between subsequent Cα atoms along a protein chain. At the junction between

two contiguous links, two angles (θ and φ) describe the orientation of the second link

relative to the first. The angle θ describes the inclination of a link relative to the prior

link, while the angle φ describes the azimuthal rotation of the link relative to the prior

link.

In this model, the set of links formed by the polymer assume a rigid helix, anal-

ogous to the folded protein α-helix. This is accomplished by setting all φ angles along

the chain to be random values chosen from a Gaussian distribution with µφ = 0.83 and

standard deviation σφ = 0, and all θ angles chosen from a Gaussian distribution with

mean µθ = 1.54 and standard deviation σθ = 0. By increasing the standard devia-

tion, ensembles can be generated which model the fluctuation of the polymer around

the average, folded conformation. This model can be used to gauge the effect of noise

on the estimator in a systematic and physically meaningful way. An example polymer

ensemble for this model is shown in Figure 6.1A.
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A B

C D

Figure 6.1: Structural ensembles from three polymer models. Two thousand semi-
transparent structures from three different polymer models are shown overlaying the
solid, fully-folded helix structure for (A) the semirigid helix model with σθ = 0.1, (B)
the half-folded helix model with σθ = 0.01 and σθunfolded = 0.1, (C) the correlated helix
model with two correlated, folding motions, and (D) the correlated helix model with
three correlated, folding motions.
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Half-folded Helix

While the semirigid helix models the effects of noise across the entire folded

conformation, it is clear that proteins do not fold/unfold in such a global manner. In-

stead, one portion of the helix may fold/unfold while the other portion remains folded,

and the half-folded helix model is designed to investigate this effect on the estimation

of dimensionality. This model is formed by first dividing the polymer into two contigu-

ous segments, and applying the standard deviation, σθunfolded , to the first segment, and

then fixing the second segment with θfolded = 1.54. Both segments have a fixed angle

φpolymer = 0.83, but zero-mean noise with a standard deviation of 0.01 is then injected

into the system at all times, so the structure is not completely rigid. Therefore, by set-

ting σθunfolded = 0.0, this model becomes equivalent to the semirigid helix model with

σθ = σφ = 0.01. However, as σθunfolded is increased, the second segment retains a helix-

like conformation with minimal noise while the first segment becomes progressively

more disordered. Thus, the effects on the dimensionality estimator due to a different

number of significant dimensions (or mixed levels of noise) can be investigated using

this model. An example polymer ensemble for this model is shown in Figure 6.1B.

Correlated Helix

While the previous two models investigate several variables that impact estima-

tor performance, they both consist of a mean helix-like structure which represents the

folded state. However, it is commonly thought that proteins often exhibit coordinated

motions, where several parts of the chain would be moving in response to the motions

along other parts of the chain. This would naturally have an effect on the underlying

dimensionality estimation, especially if such motions were of large amplitude relative

to general noise. Methods such as normal mode analysis are effective for finding these

coordinated motions for folded proteins [37], and therefore extending this idea to IDPs

is desirable. The correlated helix model is designed to effectively validate the perfor-

mance of dimensionality estimators for the purpose of estimating the total number of
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such motions.

The general idea behind the correlated helix model is to generate a polymer

trajectory which exhibits coordinated folding and unfolding, i.e. from a helical confor-

mation to a nearly rigid rod, and then in reverse. This is accomplished starting with all

angles set so that the polymer is in a helical conformation (φ = 0.83 and θ = 1.54).

The theta angles are then decremented by a small amount, εθ + N (0, 0.01), and a new

conformation is generated. This process in repeated until the θ angles are less than 0.087

radians (nearly a straight rod). The angles are then incremented by εθ +N (0, 0.01) on

each step to bring the polymer back to a helical conformation (until θ > 1.54). While

this would result in a simple one-dimensional model, the polymer can be broken into

distinct segments, si, each with a unique increment εsiθ . Even if εsiθ is set to the same

value for all segments, the small amount of Gaussian noise added to the increments at

each step ,N (0, σεθ), would make the dimensionality of the system equal to the number

of independent segments chosen to exhibit coordinated motion, i.e. the number of inde-

pendent εsθ values used. For simplicity, the total number of independent εsθ values used

is referred to as the number of correlated dimensions (dcor) in the ensemble. In addi-

tion, a small amount of Gaussian noise with zero mean and standard deviation, σθ,φ, is

added to all angles, independent of the coordinated walk in angle space. Thus, the effect

of noise can be investigated independent of the coordinated motion of the helix. This

model therefore can examine the utility of dimensionality estimators for determining the

number of effective coordinated dimensions of a polymer system and what effect noise

has on estimates for the exact same system. Two example polymer ensembles for this

model is shown in Figure 6.1C and 6.1D.

6.2.3 Noise Screening Using Discrete Fourier Transforms

Noise is an inevitable hurdle to overcome when applying dimensionality esti-

mators to MD simulations. As the definition of the MLE dimension suggests, the data

must be examined at different scales in order to ascertain the intrinsic dimension of the
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manifold on which it exists. This manifold is of low dimensionality compared to the

dimensionality of the ambient space, but noise will typically blur the manifold into the

dimensions of the ambient space. That is, at small scales, the points may lay slightly

off the manifold in any direction, making the manifold of higher dimensionality. If one

looks at slightly larger scales than the magnitude of the noise, but small enough to still

not encounter a geodesically distant portion of the manifold, then the intrinsic dimen-

sionality might be recovered. Beyond this scale, multiple areas of the manifold may

be taken into consideration, leaving the estimator to yet again assign a dimensionality

equivalent to the ambient space dimensionality.

While the estimators cannot help but pay attention to the noisy aspects of the

data, some methods for effectively removing the noise or smoothing the data are poten-

tially very helpful. While many techniques exist for dealing with general smoothing of

data, a natural method from the domain of signal processing for dealing with polymer

data is to utilize the angular representation of the polymer chain combined with Discrete

Fourier Transforms (DFTs) to screen out the noise. This can be accomplished by build-

ing a vector of complex values by transforming each one of the angles along the chain

as eiθ or eiφ, for each θ or φ angle, respectively and where i =
√
−1. By taking the DFT

of this vector, all signals below a certain signal threshold or all signals above a certain

frequency can be filtered out by setting the corresponding vector elements to zero, and

then taking the inverse DFT and extracting the arguments (angles) from the result. Both

the frequency cutoff and amplitude cutoff approaches have the potential to effectively

screen the noise from the angular space, and produce a smoothed version of the poly-

mer data which should be more amenable to dimensionality estimation. However, these

approaches remain to be tested for efficacy.

6.2.4 Molecular Dynamics Simulations

Molecular dynamics simulations were performed on two NFPs and two IDPs

which cover the major structural classes of both NFPs and IDPs. The first NFP, GB1
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(RCSB Protein Data Bank ID: 1GB1), is a 16 amino acid long fast-folding protein that

spontaneously adopts a β-hairpin conformation. The second NFP, Trp-cage (RCSB Pro-

tein Data Bank ID: 1L2Y), is a 20 amino acid long fast-folding protein that sponta-

neously adopts a mainly α-helical conformation. Therefore, These two proteins cover

both general structural classes of NFPs. The folded conformations and complete se-

quences for both GB1 and Trp-cage are shown in Figure 6.2. The first IDP, Nsp1, is

a 25 amino acid subseqence of the full length wildtype FG-nucleoporin NSP1 (NCBI

Assession Number: NP 012494.1, Gene ID: 6322420), and the second, Nup116, is a

25 amino acid long subsequence of the full length wildtype FG-nucleoporin NUP116

(NCBI Assession Number: NP 013762.1, Gene ID: 6323691). These IDPs have been

shown to adopt relaxed coil and collapsed coil structures, respectively, via both theory

and experiment [21, 8]. A representative structure for each IDP is shown at the bottom of

Figure 6.2, along with the specific amino acid sequences. These structures were chosen

since they best match the average Rg and S parameters across all simulations outlined

below. See Section 2.2.3 for details on the computation of Rg and S parameters for

protein structures.

While the simulation of NFPs has been the focus of MD studies for many decades,

the simulation of IDPs presents unique challenges. The two main issues are related to

sampling and model selection. The previous chapters have already studied the aspect of

sampling for IDPs in some detail, so the main challenge addressed in this chapter is that

of model selection. In particular, the parameters governing the simulation of the proteins

such as bond strengths, bond lengths, bond angles, atomic charges, van der Walls inter-

actions, etc. have been heavily optimized to effectively simulate folded protein given

the abundance of experimental data available for verification of NFP dynamics. How-

ever, IDPs have not been given as much attention in this regard, so the typical models

employed for NFP protein simulations are often inadequate at accurately capturing the

properties of IDPs or even unfolded NFPs [79, 80, 81, 82]. Some models have been

developed in recent years to remedy this problem. While the development and testing

of these models is beyond the scope of this study, three models have been chosen for the
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Figure 3

Trp-cage: 20AA

NLYIQWLKDG
GPSSGRPPPS

GB1 Hairpin: 16AA

GEWTYDDATK
TFTVTE

Nsp1 (part): 25AA

AFSFGAKPDE
NKASATSKPA

FSFGA

Nup116 (part): 25AA

SGLFGQQNSS
NAFGQPQQQG

GLFGS

IDPs

NFPs

Figure 6.2: Protein structures and sequences examined. Top: The folded conformations
of two natively folded proteins with corresponding amino acid sequences. Bottom: Rep-
resentative structures from MD simulations of two intrinsically disordered proteins with
corresponding amino acid sequences. Structures were selected based on best match to
the average Rg and S parameters across all IDP simulations.
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simulations performed here that show promise in addressing these concerns. Therefore,

each protein was simulated using the following three models:

• Amber ff99SB-ILDN [82] – This model is the state-of-the-art in protein folding,

and the corrections made compared to traditional models should address some

known issues with simulated the unfolded state of proteins. It is based on the

traditional Amber ff99SB model [83], but it was not been developed with IDPs

in mind.

• Amber ff99SB-PSN [84] – This model makes small changes to the traditional

Amber ff99SB model in order to better match experimental results for small

disordered peptides. It has been shown to reliably simulate NFPs as well, even

though this model was specifically designed for modeling IDPs.

• Amber ff03w[85] – This model makes some changes to the traditional Amber

ff99SB model to better model the unfolded state of NFPs. Again, while these

changes are thought to be favorable to the study of IDPs as well, this has not

been extensively verified.

Ten independent replicate simulations of classical molecular dynamics were per-

formed on the four proteins listed above using all three forcefield models listed above.

The simulations were performed using the GROMACS version 4.5.5 software pack-

age [86], using the OBC/GBSA implicit solvent model [87]. Charged zwitter ionic

termini of the proteins were used even for the disordered proteins to facilitate compar-

ison between NFPs and IDPs, and the because they are needed to adequately stabilize

the folded conformations of the NFPs [85]. Hydrogen bonds were constrained using the

LINCS algorithm, and the velocity rescale thermostat was used for temperature control,

both with default parameter settings. Each simulation started from a completely ex-

tended conformation that was minimized for 10000 steps of steepest descent, and then

started with a unique set of random initial velocities. The temperature at the beginning

of the simulation was set to 300K, but was then linearly increased to 600K for the first
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25ns of the simulation, then held at 600K for 50ns before linearly decreasing the tem-

perature for another 25ns back down to 300K. The simulation then continued on for an

additional 250ns at a constant 300K. Structures were saved every 2ps, but were subsam-

pled at every 10ps for all analyses presented here for tractability to form a total of 35001

structures per simulation. This is an aggregate total of 42 microseconds of simulation

for this study.

6.3 Results

6.3.1 Semirigid Helix

Semirigid helix ensembles were generated for three different polymer lengths

(l): 16, 20, and 25 particles. Since the actual number of links in these polymers is one

less than the number of particles, there are 2l − 5 degrees of freedom (DoF) in each of

these the polymer chains: 27, 35, and 45, respectively. These lengths were chosen be-

cause they model the lengths of some of the proteins in the MD simulations (e.g. GB1,

which is 16 residues long). Ensembles of N = 2000 and N = 5000 structures each

were generated for five different values of σθ,φ = [0.0, 0.01, 0.1, 1.0, 3.0, 10.0]. Each

ensemble models the folded structure of a protein with increasing degrees of noise,

with a maximum σθ,φ = 10.0 that is equivalent to a completely random chain. A

noise level σθ,φ = 0.1 is most similar to that observed in MD simulations of folded

proteins of corresponding length at 300K (RMSD ≈ 0.1nm). In addition, each of

these ensembles was subjected to noise smoothing via DFTs at various cutoff fractions

(0.0, 0.01, 0.05, 0.1, 0.5) in terms of frequency or amplitude of the component angular

signals. While the ensembles are not simulations, they still model a sparsely sampled

trajectory, and the results play a large role in deciphering the efficacy of the DFT screen-

ing methods.

The dimensionality estimation results for the semirigid helix using N = 5000

structures of length l = 20 are shown in Figure 6.3. The effect of various levels of noise
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on the estimator (Figure 6.3A) indicate that even the smallest noise levels will result

in large overestimation of the intrinsic dimensionality of the system. However, noise

is inherently high-dimensional, filling the entire ambient space of available degrees of

freedom. A system of this length has 2l − 5 = 35 DoF, so the maximum noise of σθ,φ

should allow an accurate prediction of the system size. However, only at small values of

k can the estimator make an accurate prediction at this level of noise. At larger values of

k, the estimates decrease. Since all degrees of freedom are being used, it is clear that the

falloff in the estimates is due to a lack of adequate sampling. The results in Table A.5

for the N = 2000 case confirm this analysis, as that sample suffers even more at large

k. However, Figure 6.3A also shows that the smaller noise levels are more hindered

in that regard. In other words, small magnitudes in the fluctuation of the polymer will

lead to lower estimations of the dimensionality than very extended ones. Therefore, it is

expected that estimates will be a fraction lower than the maximum number of DoF for

fully folded systems.

Figure 6.3B shows the DFT frequency smoothing results for the same semirigid

helix at various levels of smoothing. As the fraction of the removed signals increases, it

is clear that differences are only seen at very large fraction values where the dimension-

ality estimates become lower. Also, this effect is more dramatic for small k than middle

or large values of k. On the whole, it is clear that the smoothing was not very effective at

removing the noise. It does create a more consistent estimate across all values of k, but

this is not desired since the estimates for small k were clearly more accurate as shown

in Figure 6.3.

The remaining results for the rest of the semirigid helices are shown in Ta-

bles 6.3-6.2. These results corroborate the results observed in Figure 6.3. In particular,

the overestimation of the dimensionality due to noise, as well as the underestimation

of the total number of degrees of freedom at smaller noise levels repeats in all of the

data. The results for the DFT amplitude smoothed estimates are shown in Tables 6.1

and 6.2. This method of smoothing has a smaller effect on the results than the frequency

smoothing method, shown in Tables 6.1 and 6.2, in terms of the raw drop in the dimen-
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Figure 6.3: Semirigid helix model results. (A) Estimated dimensionality for a semirigid
helical polymer ofN = 5000 structures of length 20 with various amounts of noise (σθ,φ)
injected into the “folded” ensemble. (B) Estimated dimensionality for the same polymer
under a noise level of σθ,φ = 0.10, but with DFT frequency cutoff smoothing applied
to smooth out different fractions of the high-frequency motions in order to attempt to
eliminate the effect of the noise.
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Table 6.1: Dimensionality estimates for the semirigid helix model with N = 2000
structures across all polymer lengths, all noise levels and all levels of DFT smoothing
using a fractional frequency cutoff. The number of degrees of freedom in each ensemble
is provided for reference.

Frequency Smoothing Fraction
DoF=27 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 17.364 17.375 17.446 17.359 12.584
0.10 17.396 17.406 17.474 17.385 12.583
1.00 21.064 21.083 21.063 20.999 13.429
3.00 23.125 23.094 22.985 22.913 14.574
10.00 23.379 23.386 23.213 23.047 14.549

DoF=35 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 20.554 20.557 20.654 20.586 13.017
0.10 20.597 20.595 20.704 20.626 13.020
1.00 25.407 25.404 25.170 24.912 14.429
3.00 27.880 27.874 27.861 27.698 15.795
10.00 28.349 28.338 28.386 28.232 15.760

DoF=45 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 24.142 24.224 24.239 24.044 13.574
0.10 24.208 24.272 24.276 24.101 13.579
1.00 30.300 30.301 29.941 30.032 15.418
3.00 33.255 33.271 33.108 32.746 16.869
10.00 33.543 33.506 33.396 33.490 17.005

sionality estimates. While frequency smoothing sharply affected small values of k, the

effect is more broad for amplitude smoothing, affecting all k values relatively equally,

and only noticeably for larger noise values. Therefore, using a frequency cutoff would

be considered more useful if one expects noise to dominate the estimates at small k. A

breakdown of these results for different scales of k can be found in the corresponding

tables in Section A.1.
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Table 6.2: Dimensionality estimates for the semirigid helix model with N = 5000
structures across all polymer lengths, all noise levels and all levels of DFT smoothing
using a fractional frequency cutoff. The number of degrees of freedom in each ensemble
is provided for reference.

Frequency Smoothing Fraction
DoF=27 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 18.885 18.912 18.897 18.811 14.478
0.10 18.927 18.958 18.932 18.851 14.472
1.00 22.403 22.421 22.367 22.150 15.232
3.00 24.846 24.874 24.750 24.634 16.437
10.00 24.753 24.772 24.684 24.524 16.420

DoF=35 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 22.402 22.420 22.417 22.383 14.991
0.10 22.437 22.465 22.472 22.424 14.991
1.00 27.159 27.131 27.004 26.845 16.365
3.00 29.865 29.864 29.743 29.503 17.684
10.00 30.374 30.377 30.316 30.113 17.797

DoF=45 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 26.207 26.258 26.353 26.292 15.585
0.10 26.280 26.310 26.401 26.348 15.585
1.00 32.423 32.391 32.220 32.109 17.528
3.00 35.903 35.846 35.682 35.439 19.031
10.00 36.219 36.147 36.096 36.150 19.093
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Table 6.3: Dimensionality estimates for the semirigid helix model with N = 2000
structures across all polymer lengths, all noise levels and all levels of DFT smoothing
using a fractional amplitude cutoff. The number of degrees of freedom in each ensemble
is provided for reference.

Amplitude Smoothing Fraction
DoF=27 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 17.364 17.364 17.350 17.404 17.135
0.10 17.396 17.395 17.381 17.410 17.341
1.00 21.064 21.064 21.085 21.115 15.984
3.00 23.125 23.126 23.110 23.064 17.214
10.00 23.379 23.380 23.364 23.370 16.876

DoF=35 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 20.554 20.554 20.557 20.578 20.448
0.10 20.597 20.597 20.603 20.610 20.549
1.00 25.407 25.407 25.423 25.429 19.985
3.00 27.880 27.878 27.877 27.922 20.694
10.00 28.349 28.349 28.340 28.266 20.485

DoF=45 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 24.142 24.141 24.146 24.103 24.031
0.10 24.208 24.208 24.218 24.162 24.200
1.00 30.300 30.301 30.305 30.248 22.730
3.00 33.255 33.255 33.286 33.231 24.111
10.00 33.543 33.544 33.531 33.566 25.028
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Table 6.4: Dimensionality estimates for the semirigid helix model with N = 5000
structures across all polymer lengths, all noise levels and all levels of DFT smoothing
using a fractional amplitude cutoff. The number of degrees of freedom in each ensemble
is provided for reference.

Amplitude Smoothing Fraction
DoF=27 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 18.885 18.885 18.890 18.924 18.614
0.10 18.927 18.927 18.935 18.956 18.717
1.00 22.403 22.403 22.400 22.436 17.307
3.00 24.846 24.846 24.839 24.782 16.464
10.00 24.753 24.753 24.740 24.752 16.721

DoF=35 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 22.402 22.402 22.408 22.436 22.485
0.10 22.437 22.436 22.442 22.467 22.455
1.00 27.159 27.159 27.168 27.151 21.539
3.00 29.865 29.865 29.865 29.879 21.875
10.00 30.374 30.375 30.374 30.372 20.788

DoF=45 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 26.207 26.207 26.195 26.112 26.064
0.10 26.280 26.279 26.267 26.200 26.183
1.00 32.423 32.423 32.389 32.409 25.983
3.00 35.903 35.903 35.897 35.851 25.763
10.00 36.219 36.219 36.241 36.208 25.504
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6.3.2 Half-folded Helix

Half-folded helix ensembles were generated for three different polymer lengths

(l): 16, 20, and 25 particles. The total number of degrees of freedom in each set was 27,

35, and 45, respectively. Ensembles of N = 2000 and N = 5000 structures each were

generated for five different values of σθunfolded = [0.0, 0.01, 0.1, 1.0, 3.0, 10.0]. Each en-

semble models the folded structure of a protein on one side, i.e. a helix with relatively

strong structural integrity, versus the other side which is either folded or unfolded as

a function of σθunfolded . Therefore these ensembles serve as a model for the partially

folded state of an NFP, or of proteins which are normally partially folded under native

conditions. The ensembles were also subjected to noise smoothing via DFTs at various

cutoff fractions (0.0, 0.01, 0.05, 0.1, 0.5) in terms of frequency or amplitude of the com-

ponent angular signals. Like the semirigid model, this model produces ensembles which

are similar to a sparsely sampled, equilibrated MD trajectory, i.e. there are no temporal

correlations between successive structures.

The dimensionality estimation results for the half-folded helix using 5000 struc-

tures of length 20 are shown in Figure 6.4. The effect of various levels of noise on

the estimator (Figure 6.4A) indicate that the introduction of larger amounts of noise

into only one half of the structure actually lowers the estimates for the polymer. This

result is seemingly in direct contrast with the earlier results from the semirigid helix

model, which showed an increase in estimated dimensionality with increasing noise.

The estimates for the half-folded helix are still, in general, overestimating the intrinsic

dimensionality of the system (which is still zero by definition). However, it is clear

that a half-folded polymer system (in the presence of small amounts of noise) will have

lower estimated dimensionality than either its completely unfolded or completely folded

cousins. In addition, this effect is most dramatic at intermediate levels of σθunfolded with

a minimum in this study at σθunfolded = 0.1. This is interesting because it models the

smoothness of the transition from a folded system with high estimated dimensionality

(due to the presence of minor, anticipated noise and σθunfolded = 0.0), to a system with
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low estimated dimensionality as it starts to unfold (intermediate σθunfolded), and finally

back to a system with high estimated dimensionality (high σθunfolded). Therefore, the re-

sults from both the half-folded helix model and the semirigid helix model demonstrate

that the estimator is capable of distinguishing between interesting shifts in structure

even if it is underestimating or overestimating the dimensionality. However, one should

note that while these results hold for polymer ensembles and simulations, and therefore

potentially protein simulations, more general data sets will most likely not conform to

these trends.

Several predictions can be made from these data. Although the intrinsic dimen-

sionality of a folded system is zero, the estimator will predict extremely high estimates

due to the noise (especially for small k). However, the estimates are predicted to drop

during the intermediate transitions in the folding process, just like the half-folded helix

in the intermediate noise state. Also, since disordered proteins are not truly random

coils, their estimated dimensionality is predicted to be somewhat depressed, and should

fall in the intermediate regime investigated here with the half-helix model at most times.

Therefore, it might be possible to distinguish folding proteins from disordered proteins

based on the estimates, even in the presence of noise. Nonetheless, the ability to screen

the noise from the models would be of benefit in order to accurately distinguish be-

tween a folded protein and completely random coil, even if proteins cannot exhibit such

extreme dynamics due to steric exclusion and bond angle constraints.

Figure 6.4B shows the DFT frequency smoothing results for the same half-folded

helix model at various levels of smoothing. As the fraction of the removed signal in-

creases, the same effect is observed with this model as with the semirigid helix model

above: the smoothing affects mainly the high estimates at small k. Smoothing the data

consistently allows the estimator to make lower estimates, and doesn’t seem to effect

the rank-order of the estimates. However, it also cannot smooth it enough to obtain the

desired estimate of zero for these systems which are all essentially oscillating around a

helical structure.

The remaining results for the rest of the half-folded helices are shown in Ta-
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Figure 6.4: Half-folded helix model results. (A) Estimated dimensionality for a half-
folded helical polymer of length 20 with various amounts of noise (σθunfolded) injected
into the half-folded ensemble. (B) Estimated dimensionality for the same polymer under
a noise level of σθ,φ = 0.10, but with DFT frequency cutoff smoothing applied to smooth
out different fractions of the high-frequency motions in order to attempt to eliminate the
effect of the noise.
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bles 6.7-6.6. These results corroborate the results observed in Figure 6.4. In particular,

the drop in estimated dimensionality due to intermediate levels of σθunfolded and subse-

quent increase at higher values of the overestimation of σθunfolded . The results for the

DFT amplitude smoothed estimates are shown in Tables 6.5 and 6.6. This method of

smoothing has a smaller effect on the results than the frequency smoothing method,

shown in Tables 6.5 and 6.6 in terms of the raw drop in the dimensionality estimates.

While frequency smoothing sharply affected small values of k, the effect is more broad

for amplitude smoothing, affecting all k values relatively equally, and only noticeable

for larger noise values. Therefore, the results are similar to those obtained from the

semirigid helix model, and using the frequency cutoff might be the more useful choice

as opposed to an amplitude cutoff. A breakdown of these results for different scales of

k can be found in the corresponding tables in Section A.2.

6.3.3 Correlated Helix

Correlated helix ensembles were generated for two different polymer lengths

(l): 20 and 25 particles each for differing numbers of correlated dimensions: 2, 3, and

5. The total number of degrees of freedom in each set was 35 and 45 respectively, but

the motions of the polymer are constrained onto a space equivalent to the number of

correlated dimensions. Ensembles of N = 2000 and N = 5000 structures each were

generated for five different values of σθ,φ = [0.0, 0.01, 0.1, 1.0, 3.0, 10.0]. Each ensem-

ble models the coordinated folding/unfolding of a set of helices equal to the number of

correlated dimensions for the ensemble. Since each structure is successively generated

based on the prior structure in this model, it is effectively a trajectory. However, the

noise level injected into the model greatly affects the extent to which the ensemble can

be recognized as a trajectory. At σθ,φ = 0.0, the model indeed has this property. But at

σθ,φ = 10.0, the noise is so great that that the model would be equivalent to the semirigid

chain model with the same σθ,φ = 0.0. This model can therefore be used to investigate

the effect of correlated motions on the estimator similar to how the effect of interme-
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Table 6.5: Dimensionality estimates for the half-folded helix model with N = 2000
structures across all polymer lengths, all noise levels and all levels of DFT smoothing
using a fractional frequency cutoff. The number of degrees of freedom in each ensemble
is provided for reference.

Frequency Smoothing Fraction
DoF=27 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 17.364 17.375 17.446 17.359 12.584

0.01 17.057 16.975 16.863 17.039 12.404
0.10 12.505 12.539 12.630 12.575 10.965
1.00 13.976 13.942 13.863 13.909 10.838
3.00 15.415 15.382 15.327 15.325 12.098
10.00 15.415 15.382 15.327 15.325 12.098

DoF=35 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 20.554 20.557 20.654 20.586 13.017

0.01 19.837 19.860 19.735 19.898 12.954
0.10 14.668 14.566 14.629 14.491 11.916
1.00 16.863 16.849 16.763 16.559 12.394
3.00 18.556 18.525 18.425 18.361 13.191
10.00 18.470 18.471 18.375 18.451 13.068

DoF=45 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 24.142 24.224 24.239 24.044 13.574

0.01 23.193 23.081 23.084 23.126 13.414
0.10 16.323 16.313 16.279 16.145 12.307
1.00 19.337 19.252 19.252 18.999 12.988
3.00 21.578 21.472 21.311 21.105 14.178
10.00 21.693 21.645 21.536 21.429 14.082
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Table 6.6: Dimensionality estimates for the half-folded helix model with N = 5000
structures across all polymer lengths, all noise levels and all levels of DFT smoothing
using a fractional frequency cutoff. The number of degrees of freedom in each ensemble
is provided for reference.

Frequency Smoothing Fraction
DoF=27 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 18.885 18.912 18.897 18.811 14.478

0.01 18.535 18.567 18.420 18.409 14.306
0.10 13.407 13.414 13.401 13.374 12.193
1.00 14.746 14.715 14.681 14.562 12.094
3.00 16.057 16.047 16.024 15.923 13.132
10.00 16.057 16.047 16.024 15.923 13.132

DoF=35 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 22.402 22.420 22.417 22.383 14.991

0.01 21.670 21.714 21.599 21.628 14.920
0.10 15.759 15.758 15.714 15.738 13.566
1.00 17.704 17.715 17.591 17.609 13.863
3.00 19.462 19.468 19.461 19.408 14.715
10.00 19.521 19.531 19.423 19.328 14.681

DoF=45 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 26.207 26.258 26.353 26.292 15.585

0.01 25.331 25.255 25.277 25.269 15.408
0.10 17.794 17.707 17.779 17.821 14.157
1.00 20.434 20.345 20.321 20.183 14.676
3.00 22.686 22.627 22.517 22.413 16.008
10.00 22.859 22.843 22.809 22.596 15.861
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Table 6.7: Dimensionality estimates for the half-folded helix model with N = 2000
structures across all polymer lengths, all noise levels and all levels of DFT smoothing
using a fractional amplitude cutoff. The number of degrees of freedom in each ensemble
is provided for reference.

Amplitude Smoothing Fraction
DoF=27 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 17.364 17.364 17.350 17.404 17.135

0.01 17.057 17.057 17.070 17.054 13.358
0.10 12.505 12.502 12.303 12.274 12.135
1.00 13.976 13.972 13.977 13.959 12.103
3.00 15.415 15.413 15.425 15.445 10.147
10.00 15.415 15.413 15.425 15.445 10.147

DoF=35 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 20.554 20.554 20.557 20.578 20.448

0.01 19.837 19.837 19.815 19.946 16.082
0.10 14.668 14.667 14.465 14.405 14.447
1.00 16.863 16.859 16.847 16.838 14.200
3.00 18.556 18.553 18.528 18.554 13.601
10.00 18.470 18.467 18.445 18.476 13.285

DoF=45 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 24.142 24.141 24.146 24.103 24.031

0.01 23.193 23.195 23.218 23.187 17.984
0.10 16.323 16.321 16.110 16.048 15.999
1.00 19.337 19.331 19.335 19.364 15.893
3.00 21.578 21.574 21.584 21.500 15.740
10.00 21.693 21.689 21.682 21.641 15.339
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Table 6.8: Dimensionality estimates for the half-folded helix model with N = 5000
structures across all polymer lengths, all noise levels and all levels of DFT smoothing
using a fractional amplitude cutoff. The number of degrees of freedom in each ensemble
is provided for reference.

Amplitude Smoothing Fraction
DoF=27 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 18.885 18.885 18.890 18.924 18.614

0.01 18.535 18.535 18.531 18.472 14.605
0.10 13.407 13.405 13.181 13.115 13.027
1.00 14.746 14.741 14.747 14.772 12.884
3.00 16.057 16.054 16.046 15.995 10.009
10.00 16.057 16.054 16.046 15.995 10.009

DoF=35 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 22.402 22.402 22.408 22.436 22.485

0.01 21.670 21.670 21.670 21.735 16.364
0.10 15.759 15.758 15.502 15.462 15.255
1.00 17.704 17.698 17.696 17.722 15.217
3.00 19.462 19.458 19.463 19.455 13.349
10.00 19.521 19.517 19.513 19.567 12.864

DoF=45 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 26.207 26.207 26.195 26.112 26.064

0.01 25.331 25.330 25.324 25.291 19.305
0.10 17.794 17.793 17.515 17.387 17.457
1.00 20.434 20.427 20.420 20.353 16.713
3.00 22.686 22.681 22.683 22.660 15.686
10.00 22.859 22.854 22.864 22.854 15.008
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diate levels of disorder was investigated using the half-folded helix model. In addition,

each of these ensembles was subjected to noise smoothing via DFTs at various cutoff

fractions (0.0, 0.01, 0.05, 0.1, 0.5) in terms of frequency or amplitude of the component

angular signals.

The dimensionality estimation results for the correlated helix using N = 5000

structures of length 20, exhibiting 5 correlated dimensions is shown in Figure 6.5. The

effect of various levels of noise on the estimator (Figure 6.5A) indicate that the cor-

relations in the motion of the ensemble allow the estimator to make a fairly accurate

assessment of the dimensionality of the system for small levels of noise. It still underes-

timates the intrinsic dimensionality of 5, but that has been the case consistently for both

noise and signal using these models, most likely due to undersampling. Underestimation

is also potentially due to the fact that the manifold is not closed, and estimates near the

boundaries may therefore be artificially low. This is even true out to the noise level ob-

served to best mimic that of a folded system: σθ,φ = 0.1. However, the effect at small k

is less strong, so the estimator is less accurate in this case. The major cause of this result

is the larger amplitude motion that the correlated dimensions are capturing relative to the

noise. However, once the noise level becomes sufficiently large, the correlated signal is

lost, and the estimates jump to the same value as the equivalent semirigid helix model.

Such correlated motion would be exhibited by very extended protein chains, and even

short pieces of a folding protein during the folding process. Therefore, in combination

with the effects observed from the half-folded helix data, it is clear that intermediate

conformations and correlated motion might allow the estimator to adequately produce

a signal that ignores the noise to a relative, but significant extent. In this case, under-

sampling plays a large role in making these estimates inaccurate even still. However,

it is also clear by comparing the results across correlated helix ensembles with varying

numbers of correlated dimensions (see Tables 6.9,6.10, 6.13 and 6.14) that the rank-

order of the dimensionality estimates is retained. So, while an absolute estimate of the

dimensionality might be unavailable, it is clear that relative dimensionality is detected.

Figure 6.5B shows the DFT frequency smoothing results for the same correlated
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Figure 6.5: Correlated helix model results. (A) Estimated dimensionality for a corre-
lated helical polymer of length 20 and 5 correlated dimensions of motion with various
amounts of noise (σθ,φ) injected into the ensemble. (B) Estimated dimensionality for
the same polymer under a noise level of σθ,φ = 0.10, but with DFT frequency cutoff
smoothing applied to smooth out different fractions of the high-frequency motions in
order to attempt to eliminate the effect of the noise.
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helix model at various levels of smoothing. The pattern is the same as that observed

for the semirigid helix model and half-folded helix model. Essentially little effect is

garnered by setting the fraction low, but a value of 0.5 has a significant effect at small

k, allowing the estimator to more stably reproduce the same (under)estimate at small

scales, in addition to large scales.

The remaining results for the rest of the correlated helices are shown in Ta-

bles 6.11-6.14. These results corroborate the results observed in Figure 6.5. In par-

ticular, there is always a closer estimate of the intrinsic dimensionality at intermediate

levels of σθ,φ. However, there is also a consistent underestimation of the intrinsic di-

mensionality in the no-noise condition σθ,φ = 0 due to undersampling. The relative

order of the estimated dimensionality across different numbers of correlated dimensions

also persists throughout these results The results for the DFT amplitude smoothed esti-

mates are shown in Tables 6.11, 6.12, 6.15, and 6.16. This method of smoothing has a

smaller effect on the results than the frequency smoothing method, shown in Tables 6.9,

6.10, 6.13 and 6.14, in terms of the raw drop in the dimensionality estimates. While

frequency smoothing sharply affected small values of k, the effect is more broad for

amplitude smoothing, affecting all k values relatively equally, and only noticeable for

larger noise values. Therefore, the results are similar to those obtained from the semi-

rigid helix model and half-folded helix model. A breakdown of these results for different

scales of k can be found in the corresponding tables in Section A.3.

In addition to the summary statistics for the correlated helix data shown in Fig-

ure 6.5, the results of the pointwise dimensionality estimate analysis are shown in Fig-

ure 6.6. A running harmonic mean with a window size of 500 is shown in Figure 6.6

for different numbers of k. The results indicate that the pointwise method of estimating

the dimensionality works as well for estimating the dimensionality as agglomerating

the results across all structures. However, the small oscillations in the estimator around

the mean value indicate that the estimator is actually biased when it comes into contact

with the edge of the manifold. The effect is more clearly seen from the results of apply-

ing DFT smoothing to the trajectory (Figure 6.7), where the deviations are quite large
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Table 6.9: Dimensionality estimates for the correlated helix model with N = 2000
structures of length 20 using several correlated folding/unfolding events across all noise
levels and all levels of DFT smoothing using a fractional frequency cutoff. The number
of correlated dimensions in each ensemble is provided for reference.

Frequency Smoothing Fraction
Dims=2 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.857 1.852 1.881 1.895 1.922
0.01 2.519 2.520 2.512 2.493 2.293
0.10 10.056 10.029 9.895 9.797 6.063
1.00 24.785 24.734 24.491 24.032 12.084
3.00 28.156 28.118 28.070 28.051 15.748
10.00 28.470 28.616 28.262 28.201 15.794

Dims=3 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.737 2.746 2.749 2.751 2.791
0.01 2.908 2.907 2.903 2.898 2.868
0.10 7.966 7.895 7.705 7.446 4.666
1.00 24.821 24.800 24.510 24.199 12.159
3.00 27.675 27.697 27.757 27.638 15.801
10.00 28.423 28.243 28.533 27.929 15.746

Dims=5 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.335 3.333 3.328 3.314 3.328
0.01 3.382 3.380 3.372 3.355 3.340
0.10 6.396 6.324 6.072 5.771 3.970
1.00 25.369 25.294 25.067 24.607 12.085
3.00 28.142 28.066 27.916 27.850 15.744
10.00 28.226 28.338 28.190 27.862 15.737

even with smoothing. Proteins also do not often explore certain portions of their angu-

lar configuration space, so these results predict that the underestimation of the intrinsic

dimensionality would persist independent of other factors impacting the estimates.

6.3.4 Molecular Dynamics Simulations

Now that the behavior of the estimator has been verified using the polymer mod-

els, the analysis of the protein simulations remain. Several points concerning the behav-

ior of the polymer models should be reiterated for interpreting the results. First, while

the original hypothesis that an NFP will eventually fold and undergo zero-dimensional
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Figure 6.6: Correlated helix model pointwise results. Running harmonic mean of point-
wise dimensionality estimates for a correlated helical polymer of length 20 and 5 cor-
related dimensions of motion with various amounts of noise (σθ,φ) injected into the
ensemble. Estimates were obtained from averaging values for (A) small k = (2, 3, 4, 6),
(B) medium k = (8, 16, 32, 64), and (C) large k = (128, 256, 512, 1024).
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Figure 6.7: Correlated helix model smoothed pointwise results. Running harmonic
mean of pointwise dimensionality estimates for a correlated helical polymer of length
20 and 5 correlated dimensions of motion under a noise level of σθ,φ = 0.10, but
with DFT frequency cutoff smoothing applied to smooth out different fractions of
the high-frequency motions in order to attempt to eliminate the effect of the noise
for (A) small k = (2, 3, 4, 6), (B) medium k = (8, 16, 32, 64), and (C) large k =
(128, 256, 512, 1024).
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Table 6.10: Dimensionality estimates for the correlated helix model with N = 5000
structures of length 20 using several correlated folding/unfolding events across all noise
levels and all levels of DFT smoothing using a fractional frequency cutoff. The number
of correlated dimensions in each ensemble is provided for reference.

Frequency Smoothing Fraction
Dims=2 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.882 1.886 1.910 1.935 1.929
0.01 3.279 3.271 3.227 3.188 2.711
0.10 12.353 12.359 12.243 12.129 8.049
1.00 26.697 26.641 26.415 26.075 13.972
3.00 29.949 29.951 29.879 29.806 17.718
10.00 30.354 30.319 30.179 30.076 17.822

Dims=3 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.795 2.797 2.803 2.799 2.828
0.01 3.053 3.049 3.045 3.031 2.955
0.10 9.809 9.758 9.572 9.332 5.852
1.00 26.785 26.738 26.531 26.219 13.824
3.00 29.973 30.044 30.079 29.905 17.691
10.00 30.313 30.291 30.303 30.091 17.746

Dims=5 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.769 3.768 3.764 3.755 3.758
0.01 3.833 3.831 3.821 3.806 3.774
0.10 7.713 7.629 7.329 6.949 4.586
1.00 27.117 27.051 26.683 26.307 13.755
3.00 29.939 29.912 29.875 29.785 17.719
10.00 30.253 30.295 30.171 29.950 17.741
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Table 6.11: Dimensionality estimates for the correlated helix model with N = 2000
structures of length 20 using several correlated folding/unfolding events across all noise
levels and all levels of DFT smoothing using a fractional amplitude cutoff. The number
of correlated dimensions in each ensemble is provided for reference.

Amplitude Smoothing Fraction
Dims=2 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.857 1.910 1.901 1.914 1.846
0.01 2.519 2.268 2.350 2.089 1.852
0.10 10.056 9.386 4.056 3.912 2.024
1.00 24.785 24.780 24.621 23.645 3.677
3.00 28.156 28.157 28.154 28.134 20.352
10.00 28.470 28.470 28.473 28.397 21.116

Dims=3 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.737 2.798 2.822 2.836 2.828
0.01 2.908 2.867 2.872 2.999 2.828
0.10 7.966 7.059 3.605 3.659 3.445
1.00 24.821 24.823 24.766 23.906 3.928
3.00 27.675 27.675 27.676 27.585 19.842
10.00 28.423 28.422 28.425 28.418 21.111

Dims=5 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.335 3.281 3.859 3.863 3.377
0.01 3.382 3.301 3.869 3.884 3.376
0.10 6.396 5.889 3.994 4.124 3.442
1.00 25.369 25.369 25.279 24.591 3.726
3.00 28.142 28.142 28.108 28.173 19.672
10.00 28.226 28.226 28.214 28.140 20.971
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Table 6.12: Dimensionality estimates for the correlated helix model with N = 5000
structures of length 20 using several correlated folding/unfolding events across all noise
levels and all levels of DFT smoothing using a fractional amplitude cutoff. The number
of correlated dimensions in each ensemble is provided for reference.

Amplitude Smoothing Fraction
Dims=2 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.882 1.980 1.938 1.961 1.976
0.01 3.279 2.662 2.674 2.826 1.983
0.10 12.353 11.322 5.059 4.917 3.058
1.00 26.697 26.696 26.538 25.353 4.111
3.00 29.949 29.949 29.942 29.954 21.520
10.00 30.354 30.353 30.342 30.329 21.222

Dims=3 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.795 2.830 2.857 2.861 2.906
0.01 3.053 2.946 3.004 3.217 2.906
0.10 9.809 7.969 4.153 4.131 3.218
1.00 26.785 26.778 26.675 24.521 3.801
3.00 29.973 29.974 29.965 29.933 21.136
10.00 30.313 30.314 30.315 30.348 20.640

Dims=5 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.769 3.749 4.103 3.980 3.809
0.01 3.833 3.768 4.122 4.010 3.845
0.10 7.713 6.287 4.358 4.237 3.905
1.00 27.117 27.116 27.012 25.556 4.316
3.00 29.939 29.939 29.924 29.940 22.082
10.00 30.253 30.253 30.247 30.273 21.320
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Table 6.13: Dimensionality estimates for the correlated helix model with N = 2000
structures of length 25 using several correlated folding/unfolding events across all noise
levels and all levels of DFT smoothing using a fractional frequency cutoff. The number
of correlated dimensions in each ensemble is provided for reference.

Frequency Smoothing Fraction
Dims=2 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.857 1.852 1.881 1.895 1.923
0.01 2.521 2.525 2.524 2.513 2.303
0.10 11.032 11.014 10.907 10.694 6.231
1.00 28.861 28.926 28.624 28.465 12.737
3.00 33.405 33.406 33.501 33.392 16.910
10.00 33.824 33.935 33.698 33.590 17.028

Dims=3 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.741 2.750 2.752 2.754 2.795
0.01 2.909 2.908 2.901 2.896 2.868
0.10 8.361 8.331 8.136 7.808 4.677
1.00 29.660 29.568 29.229 28.694 12.780
3.00 33.723 33.724 33.207 32.931 16.824
10.00 33.479 33.447 33.290 32.942 16.983

Dims=5 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.342 3.341 3.336 3.322 3.335
0.01 3.387 3.385 3.376 3.360 3.344
0.10 6.342 6.268 5.977 5.671 3.940
1.00 29.863 29.801 29.514 29.050 12.815
3.00 33.445 33.478 33.637 33.455 16.896
10.00 33.322 33.359 33.368 33.323 17.000
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Table 6.14: Dimensionality estimates for the correlated helix model with N = 5000
structures of length 25 using several correlated folding/unfolding events across all noise
levels and all levels of DFT smoothing using a fractional frequency cutoff. The number
of correlated dimensions in each ensemble is provided for reference.

Frequency Smoothing Fraction
Dims=2 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.884 1.886 1.910 1.935 1.930
0.01 3.304 3.277 3.237 3.210 2.708
0.10 13.780 13.774 13.659 13.377 8.281
1.00 31.542 31.580 31.180 31.022 14.823
3.00 36.336 36.248 36.175 36.174 19.041
10.00 36.250 36.265 36.088 35.934 19.120

Dims=3 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.796 2.798 2.802 2.799 2.829
0.01 3.051 3.048 3.042 3.027 2.954
0.10 10.440 10.385 10.154 9.870 5.914
1.00 31.579 31.559 31.305 30.938 14.614
3.00 36.247 36.252 36.056 35.936 18.983
10.00 36.080 36.068 36.134 35.791 19.088

Dims=5 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.763 3.761 3.755 3.746 3.746
0.01 3.822 3.820 3.808 3.795 3.761
0.10 7.739 7.645 7.285 6.859 4.538
1.00 32.124 32.109 31.861 31.367 14.602
3.00 35.936 35.908 35.955 35.911 18.978
10.00 35.815 35.839 35.685 35.706 19.128
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Table 6.15: Dimensionality estimates for the correlated helix model with N = 2000
structures of length 25 using several correlated folding/unfolding events across all noise
levels and all levels of DFT smoothing using a fractional amplitude cutoff. The number
of correlated dimensions in each ensemble is provided for reference.

Amplitude Smoothing Fraction
Dims=2 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.857 1.907 1.900 1.913 1.843
0.01 2.521 2.290 2.361 2.126 1.847
0.10 11.032 10.316 4.159 4.109 1.977
1.00 28.861 28.857 28.737 27.459 3.559
3.00 33.405 33.404 33.417 33.380 24.797
10.00 33.824 33.824 33.843 33.830 24.391

Dims=3 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.741 2.801 2.826 2.840 2.830
0.01 2.909 2.876 2.888 3.064 3.125
0.10 8.361 7.280 3.668 3.769 3.274
1.00 29.660 29.658 29.741 27.922 3.847
3.00 33.723 33.723 33.728 33.666 25.132
10.00 33.479 33.478 33.483 33.457 24.323

Dims=5 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.342 3.289 3.915 3.919 3.412
0.01 3.387 3.309 3.925 3.972 3.412
0.10 6.342 5.813 4.036 4.202 3.540
1.00 29.863 29.860 29.978 29.112 3.833
3.00 33.445 33.445 33.465 33.517 25.010
10.00 33.322 33.322 33.338 33.354 24.479
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Table 6.16: Dimensionality estimates for the correlated helix model with N = 5000
structures of length 25 using several correlated folding/unfolding events across all noise
levels and all levels of DFT smoothing using a fractional amplitude cutoff. The number
of correlated dimensions in each ensemble is provided for reference.

Amplitude Smoothing Fraction
Dims=2 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.884 1.980 1.939 1.961 1.976
0.01 3.304 2.678 2.762 2.941 1.985
0.10 13.780 12.589 5.434 5.122 2.938
1.00 31.542 31.544 31.589 29.571 3.902
3.00 36.336 36.335 36.362 36.335 25.268
10.00 36.250 36.250 36.261 36.205 25.937

Dims=3 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.796 2.830 2.859 2.861 2.910
0.01 3.051 2.943 3.014 3.125 2.910
0.10 10.440 8.312 4.231 4.207 3.219
1.00 31.579 31.577 31.438 29.062 3.804
3.00 36.247 36.249 36.267 36.209 25.637
10.00 36.080 36.081 36.066 36.089 26.478

Dims=5 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.763 3.738 4.144 4.008 3.846
0.01 3.822 3.757 4.156 4.042 3.846
0.10 7.739 6.261 4.397 4.280 4.020
1.00 32.124 32.121 31.958 30.691 4.353
3.00 35.936 35.935 35.939 35.851 26.042
10.00 35.815 35.814 35.823 35.764 26.626
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dynamics is still the key idea, it has been shown that the the estimator is unable to

accurately assess polymer systems of like variety. Instead, given even small amounts

of noise, the estimator will ascribe the highest dimensionality that it can (minus some

accuracy due to undersampling and open manifold end effects). However, if some por-

tions of the polymers have already folded or correlated motions are being exhibited, the

estimator will provide a lower value. The estimator was able to accurately determine

relative dimensionality under all conditions, so that these systems were discernible from

one another even under these conditions.

Aggregate Estimates

The aggregate dimensionality for each protein simulation (and corresponding

forcefield) was determined for the first 100ns annealing phase of the simulations, and

for the 250ns production phase of the simulations. The Φ and Ψ angle space of the

protein conformations from the simulations was computed, and the nearest neighbors

distances for all structures in a single simulation were calculated using Euclidean dis-

tance between the sin− cos transform of the angle vectors. Pointwise dimensionality

estimates were obtained for three sets of k nearest neighbors to assess the results at

different scales: small k = [2, 3, 4, 6], medium k = [2, 3, 4, 6, 8, 16, 32, 64], and large

k = [2, 3, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024]. The harmonic mean of the estimates

was calculated across for each of the 10 replicate simulations and boxplots of the result-

ing estimates are shown in Figures 6.8-6.10. In addition, the normalized dimensionality

estimates are shown in Figures 6.11-6.13. These are obtained by normalizing the dimen-

sionality estimates by the total number of degrees of freedom in each protein (equiva-

lent to the number of Φ and Ψ angles in each): GB1-30, Trp-cage-38, Nsp1-48, and

Nup116-48. This allows for a more balanced comparison between whether the different

proteins are of higher/lower dimensionality compared when amongst each other, since

the dimensionality estimates tend to remain in relative rank order according to all of the

polymer results.
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For the unnormalized results reported in Figures 6.8-6.10, it is clear that the an-

nealing portions of the trajectories show different dimensionality than the production

portions. This is not surprising since the temperature at the annealing stage is high

enough to disrupt any collapsed structures that would normally form at the production

temperature of 300K. In particular, the IDPs, Nsp1 and Nup116, are both higher pre-

dicted dimensionality than either of the NFPs, GB1 or Trp-cage. However, the lengths

of these sets of proteins differ, and a quick comparison to the normalized dimensionality

estimates makes it clear that the longer IDP proteins are actually undergoing dynamics

that fill fractionally fewer of their available degrees of freedom than the NFPs. Over-

all, the unnormalized estimates are about 50% lower than their target values. Since the

higher temperature annealing stage is very likely to be pressing these systems to utilize

all of their degrees of freedom similar to a the high-noise case of the semirigid polymer,

this is more than likely due to limitations in sampling and underestimation at the man-

ifold boundaries. These results are robust across all forcefields utilized here. Taking

a closer look at the estimates for the production portion of the simulations shows that

the estimates now drop considerably, but the trend of the IDPs utilizing fewer degrees

of freedom than the NFPs remains. According to the polymer studies, a lower dimen-

sionality would be predicted if there are more partially formed structures, or correlated

motions in the IDPs, or essentially less frustrated dynamics. The NFPs would there-

fore be exhibiting very high dimensionality motion due to remaining in tightly-packed,

frustrated, or possibly even folded structures.

In order to assess the structural properties of the simulations, the average radii

of gyration, Rg, and shape parameters, S, were calculated according to the methods

described Section 2.2.3 [15]. Figure 6.14 shows the distribution of these measurements

for the production simulations. The Rg data suggest that both GB1 and Trp-cage are

more compact than either Nsp1 or Nup116 in all forcefields, but some of this difference

can be attributed to the slightly longer chain lengths for Nsp1 and Nup116. However,

the S data indicate that the GB1 structures are very extended, while the Trp-cage protein

is very spherical. The IDPs are both fairly spherical as well. So, these data alone cannot
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Figure 6.8: Distributions of dimensionality estimation results for (left) 100ns anneal-
ing (300K-600K-300K) and (right) 250ns production (300K) MD simulations of GB1,
Trp-cage, Nsp1, and Nup116 using three different forcefields: (top,blue) ff99SB-ILDN,
(middle,green) ff99SB-PSN, and (bottom,red) ff03w. Estimates were obtained by taking
the harmonic mean across small values of k = [2, 3, 4, 6] for each replicate simulation.
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Figure 6.9: Distributions of dimensionality estimation results for (left) 100ns anneal-
ing (300K-600K-300K) and (right) 250ns production (300K) MD simulations of GB1,
Trp-cage, Nsp1, and Nup116 using three different forcefields: (top,blue) ff99SB-ILDN,
(middle,green) ff99SB-PSN, and (bottom,red) ff03w. Estimates were obtained by tak-
ing the harmonic mean across medium values of k = [2, 3, 4, 6, 8, 16, 32, 64] for each
replicate simulation.
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Figure 6.10: Distributions of dimensionality estimation results for (left) 100ns
annealing (300K-600K-300K) and (right) 250ns production (300K) MD simula-
tions of GB1, Trp-cage, Nsp1, and Nup116 using three different forcefields:
(top,blue) ff99SB-ILDN, (middle,green) ff99SB-PSN, and (bottom,red) ff03w. Es-
timates were obtained by taking the harmonic mean across large values of k =
[2, 3, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024] for each replicate simulation.
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Figure 6.11: Distributions of normalized dimensionality estimation results for (left)
100ns annealing (300K-600K-300K) and (right) 250ns production (300K) MD simula-
tions of GB1, Trp-cage, Nsp1, and Nup116 using three different forcefields: (top,blue)
ff99SB-ILDN, (middle,green) ff99SB-PSN, and (bottom,red) ff03w. Estimates were
obtained by taking the harmonic mean across small values of k = [2, 3, 4, 6] for each
replicate simulation and then dividing by the total number of degrees of freedom in the
respective protein.
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Figure 6.12: Distributions of normalized dimensionality estimation results for (left)
100ns annealing (300K-600K-300K) and (right) 250ns production (300K) MD sim-
ulations of GB1, Trp-cage, Nsp1, and Nup116 using three different forcefields:
(top,blue) ff99SB-ILDN, (middle,green) ff99SB-PSN, and (bottom,red) ff03w. Esti-
mates were obtained by taking the harmonic mean across medium values of k =
[2, 3, 4, 6, 8, 16, 32, 64] for each replicate simulation and then dividing by the total num-
ber of degrees of freedom in the respective protein.
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Figure 6.13: Distributions of normalized dimensionality estimation results for (left)
100ns annealing (300K-600K-300K) and (right) 250ns production (300K) MD sim-
ulations of GB1, Trp-cage, Nsp1, and Nup116 using three different forcefields:
(top,blue) ff99SB-ILDN, (middle,green) ff99SB-PSN, and (bottom,red) ff03w. Es-
timates were obtained by taking the harmonic mean across large values of k =
[2, 3, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024] for each replicate simulation and then divid-
ing by the total number of degrees of freedom in the respective protein.
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show how both GB1 and Trp-cage exhibit higher-dimensionality dynamics than the IDPs

given their very structural differences.

To help lend more information to this analysis, the secondary structure assign-

ment [16] for all of the structures was computed. The results of this analysis are shown

in Figures 6.15-6.18 for all four proteins. Nsp1 exhibits a central, mainly helical re-

gion with two flanking helical regions attached at two distinct points, residues 8 and

19, where the protein is very disordered. Nup116 has two helical regions with a disor-

dered center at residue 12. However, GB1 has adopted a long helical conformation, for

ff99SB-PSN and ff03w, and less so for ff99SB-ILDN. This would be consistent with the

S parameter data showing a more prolate structural arrangement versus the other pro-

teins. Trp-cage has a strong helical region on one end, but also a long tail on the other

end that lacks a particular structural class assignment according to DSSP. This is rem-

iniscent of the folded structure of Trp-cage, so this tail may actually be packed against

the helix as in the native structure. This corroborates the S data for this protein which

indicated a tight, spherical conformation. While the conformation that GB1 adopts is

not close to the native state, it is a well-defined structure according to DSSP. Hence both

Trp-cage and GB1 appear to be mainly sampling very trapped or folded conformations,

which would agree with the dimensionality estimates. On the other hand, the specific

disordered regions and end domains of the FG-Nups are consistent with the idea that

the structures are intermediate in nature, and lower dimensional, in agreement with the

dimensionality estimates as well.

Individual Replicate Estimates

In order to further investigate if the dimensionality estimates are in-fact predict-

ing more tightly-packed, folded structures for the NFPs, the pointwise dimensionality

estimates for representative simulations for each forcefield for all four proteins were

plotted versus time. In addition, the RMSD from the folded structure versus time, or

from the average structure in the case of the IDPs, was also plotted versus time. The re-
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Figure 6.16: Trp-cage Secondary Structure – 250ns @ 300K – Amber (A) ff99SB-ILDN
(B) ff99SB-PSN (C) ff03w
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Figure 6.17: Nsp1 Secondary Structure – 250ns @ 300K – Amber (A) ff99SB-ILDN
(B) ff99SB-PSN (C) ff03w
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Figure 6.18: Nup116 Secondary Structure – 250ns @ 300K – Amber (A) ff99SB-ILDN
(B) ff99SB-PSN (C) ff03w
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sults were smoothed using a 0.5ns window for clarity as both RMSD and dimensionality

estimates are extremely noisy from frame-to-frame. Side-by-side comparison of these

plots facilitates the discovery of portions of the trajectory that display corresponding

shifts in RMSD and the dimensionality estimates. The replicates chosen for these plots

represented the best fit to the reference structures used. Hence for GB1 and Trp-cage,

they were the replicates that best matched the folded state. For Nsp1 and Nup116, the

replicates best matching the average conformation were chosen.

The results for GB1 are shown in Figure 6.19. The most striking feature of

these plots is the essentially constant estimates of dimensionality across the production

portions of the runs even though there are clearly large, fast structural transitions that

occur according to the plot of RMSD versus time. This indeed appears to be a very

frustrated system that is constantly attempting to fold, but is restricted to suboptimal

conformational states. As a result, the thermal fluctuations of the system act as noise,

which drive the dimensionality estimates inordinately high.

The results for Trp-cage are shown in Figures 6.20. According to the RMSD

versus time plot in part B of these figures, all three simulations come very close to

folding the protein. The simulation for ff03w gets especially close, and exhibits the

highest estimated dimensionality as a result. The remaining two simulations do not

quite adopt the folded structure, and the resulting estimates are a little lower, indicating

additional disorder compared to the ff03w simulation.

The results for Nsp1 are shown in Figure 6.21. According to the RMSD plot,

this protein undergoes regular, rather minor structural transitions without becoming frus-

trated at any particular location. Likewise, the dimensionality estimates follow the trend

of the RMSD, but remain rather small compared to the two NFPs. The results for

Nup116 shown in Figure 6.22 are extremely similar to the results for Nsp1.

Additionally, the effect of DFT smoothing of the Φ-Ψ angles using a fractional

frequency cutoff of 0.5 are shown in part D of the individual simulation results. Overall,

the largest effects appear minimal for the large k values in these plots, but are more

pronounced at smaller scales (smaller values of k). Tables 6.17-6.22 provide a detailed
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Figure 6.19: Dimensionality estimation results for representative GB1 simulations
using each of the three forcefields: ff99SB-ILDN, ff99SB-PSN, and ff03w. (A)
Plot of temperature versus time, (B) RMSD from the folded structure versus time,
(C) pointwise dimensionality estimates and (D) pointwise dimensionality estimates
after applying DFT smoothing using a fractional frequency cutoff of 0.5. Point
estimates were obtained by taking the harmonic mean across all values of k =
[2, 3, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024].
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Figure 6.20: Dimensionality estimation results for representative Trp-cage simula-
tions using each of the three forcefields: ff99SB-ILDN, ff99SB-PSN, and ff03w.
(A) Plot of temperature versus time, (B) RMSD from the folded structure versus
time, (C) pointwise dimensionality estimates and (D) pointwise dimensionality es-
timates after applying DFT smoothing using a fractional frequency cutoff of 0.5.
Point estimates were obtained by taking the harmonic mean across all values of k =
[2, 3, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024].
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Figure 6.21: Dimensionality estimation results for representative Nsp1 simulations
using each of the three forcefields: ff99SB-ILDN, ff99SB-PSN, and ff03w. (A)
Plot of temperature versus time, (B) RMSD from the average structure versus time,
(C) pointwise dimensionality estimates and (D) pointwise dimensionality estimates
after applying DFT smoothing using a fractional frequency cutoff of 0.5. Point
estimates were obtained by taking the harmonic mean across all values of k =
[2, 3, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024].
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Figure 6.22: Dimensionality estimation results for representative Nup116 simula-
tions using each of the three forcefields: ff99SB-ILDN, ff99SB-PSN, and ff03w.
(A) Plot of temperature versus time, (B) RMSD from the average structure versus
time, (C) pointwise dimensionality estimates and (D) pointwise dimensionality es-
timates after applying DFT smoothing using a fractional frequency cutoff of 0.5.
Point estimates were obtained by taking the harmonic mean across all values of k =
[2, 3, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024].
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breakdown of the smoothing results at small, medium, and large k. Possibly the most

telling result from this analysis is the fact that the IDPs were much more sensitive to

the smoothing effects at small k. In particular, using the frequency fraction cutoff, the

dimensionality estimates, which were higher for the IDPs than the NFPs in the un-

smoothed results, were lower for the IDPs than the NFPs under heavily smoothed con-

ditions (large fractional cutoffs). Since only the correlated helix model exhibited this

degree sensitivity to the smoothing techniques, it might be that the IDPs are exhibiting

more correlated, large amplitude motions than the NFPs. Although this prediction is

based on the polymer results, future work is needed to determine if this result is robust

across a wider range of intrinsically disordered proteins.

6.4 Discussion

This chapter introduced a polymer framework for examining the utility of di-

mensionality estimation algorithms for studying MD simulations of proteins. The key

contribution of this framework is the development and use of several polymer mod-

els which exhibit well-defined dynamics of known dimensionality. The models include

noise, partially and fully folded structures, and correlated motions. The polymers pro-

vide an informative framework for testing the ability of the maximum likelihood estima-

tor of dimensionality, a dimensionality estimation algorithm which has received consid-

erable attention in the machine learning and physics communities due to its simplicity

and effectiveness, to estimate the dimensionality of several polymer model ensembles

where the dimensionality is known a priori. The effects of small sample sizes and noisy

sampling are treated directly, and the shortcomings of the method in these cases are ac-

knowledged. While precise estimates of the dimensionality were not attained, the sys-

tematic bias of the estimator made it effective in maintaining the rank-ordering of the

dimensionality estimates. Therefore, it can still be useful for determining differences

between protein classes.

The dimensionality estimator was used to compare the dynamics of natively
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Table 6.17: Dimensionality estimation results across all levels of DFT smoothing using
a fractional frequency cutoff for the (top) 100ns annealing (300K-600K-300K) and (bot-
tom) 250ns production (300K) MD simulations of GB1, Trp-cage, Nsp1, and Nup116
using three different forcefields: ff99SB-ILDN, ff99SB-PSN, and ff03w. Estimates were
obtained by taking the harmonic mean across small values of k = [2, 3, 4, 6].

Frequency Smoothing Fraction
Annealing 0.00 0.01 0.05 0.10 0.50

G
B

1 ff99SB-ILDN 15.930 15.812 15.234 14.350 5.244
ff99SB-PSN 16.648 16.530 15.913 14.989 5.452
ff03w 17.440 17.363 16.887 16.059 5.727

Tr
p-

ca
ge ff99SB-ILDN 17.315 17.202 16.616 15.618 5.331

ff99SB-PSN 18.097 17.986 17.465 16.440 5.693
ff03w 17.950 17.831 17.402 16.606 6.040

N
sp

1 ff99SB-ILDN 19.134 18.923 17.927 16.385 4.899
ff99SB-PSN 19.189 18.956 17.876 16.264 4.853
ff03w 21.588 21.388 20.371 18.843 5.336

N
up

11
6 ff99SB-ILDN 19.644 19.436 18.434 16.897 4.980

ff99SB-PSN 19.934 19.728 18.752 17.201 5.028
ff03w 21.252 21.063 20.084 18.693 5.351

Production 0.00 0.01 0.05 0.10 0.50

G
B

1 ff99SB-ILDN 15.492 15.512 15.467 15.330 8.321
ff99SB-PSN 15.082 15.053 15.036 14.973 7.844
ff03w 16.668 16.682 16.615 16.521 8.577

Tr
p-

ca
ge ff99SB-ILDN 18.997 18.991 18.881 18.732 8.199

ff99SB-PSN 19.319 19.292 19.248 19.047 8.374
ff03w 21.642 21.631 21.529 21.505 9.685

N
sp

1 ff99SB-ILDN 19.594 19.574 19.451 19.256 8.127
ff99SB-PSN 19.953 19.914 19.870 19.659 7.498
ff03w 17.375 17.362 17.210 16.876 6.123

N
up

11
6 ff99SB-ILDN 17.129 17.115 16.910 16.553 6.351

ff99SB-PSN 14.649 14.612 14.394 13.978 5.459
ff03w 17.270 17.239 17.066 16.770 6.696

folded and intrinsically disordered proteins. While it was hypothesized that the folded

state of proteins was of zero dimensionality, the practical limitations of the algorithm
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Table 6.18: Dimensionality estimation results across all levels of DFT smoothing us-
ing a fractional frequency cutoff for the (top) 100ns annealing (300K-600K-300K)
and (bottom) 250ns production (300K) MD simulations of GB1, Trp-cage, Nsp1, and
Nup116 using three different forcefields: ff99SB-ILDN, ff99SB-PSN, and ff03w. Es-
timates were obtained by taking the harmonic mean across small values of k =
[2, 3, 4, 6, 8, 16, 32, 64].

Frequency Smoothing Fraction
Annealing 0.00 0.01 0.05 0.10 0.50

G
B

1 ff99SB-ILDN 15.947 15.868 15.505 14.993 9.363
ff99SB-PSN 16.779 16.696 16.327 15.800 9.846
ff03w 17.086 17.020 16.676 16.169 10.089

Tr
p-

ca
ge ff99SB-ILDN 17.306 17.228 16.875 16.351 10.148

ff99SB-PSN 17.873 17.804 17.474 16.975 10.634
ff03w 16.298 16.233 15.948 15.531 10.073

N
sp

1 ff99SB-ILDN 19.351 19.254 18.750 18.035 10.471
ff99SB-PSN 19.452 19.328 18.787 18.007 10.351
ff03w 21.306 21.198 20.663 19.882 11.193

N
up

11
6 ff99SB-ILDN 19.594 19.493 19.022 18.335 10.675

ff99SB-PSN 20.272 20.166 19.664 18.939 10.910
ff03w 21.175 21.070 20.586 19.919 11.470

Production 0.00 0.01 0.05 0.10 0.50

G
B

1 ff99SB-ILDN 12.543 12.542 12.495 12.417 9.943
ff99SB-PSN 12.409 12.395 12.344 12.252 9.577
ff03w 14.388 14.385 14.336 14.259 11.081

Tr
p-

ca
ge ff99SB-ILDN 15.450 15.443 15.370 15.278 11.386

ff99SB-PSN 15.882 15.863 15.792 15.660 11.563
ff03w 18.528 18.517 18.457 18.361 13.772

N
sp

1 ff99SB-ILDN 15.809 15.788 15.702 15.549 11.359
ff99SB-PSN 16.119 16.100 15.998 15.838 11.146
ff03w 13.216 13.185 13.041 12.815 8.722

N
up

11
6 ff99SB-ILDN 13.474 13.445 13.277 13.048 8.970

ff99SB-PSN 11.285 11.250 11.077 10.836 7.389
ff03w 13.638 13.608 13.463 13.258 9.365
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Table 6.19: Dimensionality estimation results across all levels of DFT smoothing us-
ing a fractional frequency cutoff for the (top) 100ns annealing (300K-600K-300K)
and (bottom) 250ns production (300K) MD simulations of GB1, Trp-cage, Nsp1, and
Nup116 using three different forcefields: ff99SB-ILDN, ff99SB-PSN, and ff03w. Es-
timates were obtained by taking the harmonic mean across small values of k =
[2, 3, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024].

Frequency Smoothing Fraction
Annealing 0.00 0.01 0.05 0.10 0.50

G
B

1 ff99SB-ILDN 17.164 17.106 16.845 16.518 13.422
ff99SB-PSN 17.017 16.956 16.705 16.391 13.381
ff03w 17.819 17.762 17.501 17.158 13.721

Tr
p-

ca
ge ff99SB-ILDN 17.635 17.583 17.360 17.065 14.218

ff99SB-PSN 18.861 18.809 18.595 18.302 15.323
ff03w 16.094 16.043 15.836 15.553 12.788

N
sp

1 ff99SB-ILDN 18.208 18.145 17.888 17.559 14.403
ff99SB-PSN 22.348 22.267 21.931 21.486 17.374
ff03w 21.624 21.553 21.248 20.839 16.796

N
up

11
6 ff99SB-ILDN 21.127 21.069 20.823 20.493 17.094

ff99SB-PSN 22.477 22.416 22.158 21.822 18.244
ff03w 21.546 21.485 21.224 20.887 17.302

Production 0.00 0.01 0.05 0.10 0.50

G
B

1 ff99SB-ILDN 8.561 8.542 8.462 8.358 7.222
ff99SB-PSN 8.639 8.619 8.532 8.420 7.165
ff03w 11.105 11.089 11.015 10.918 9.516

Tr
p-

ca
ge ff99SB-ILDN 9.634 9.616 9.528 9.406 7.994

ff99SB-PSN 10.431 10.407 10.297 10.153 8.513
ff03w 12.934 12.912 12.814 12.679 10.954

N
sp

1 ff99SB-ILDN 10.286 10.257 10.141 9.988 8.320
ff99SB-PSN 11.260 11.228 11.106 10.937 9.079
ff03w 8.382 8.349 8.211 8.032 6.367

N
up

11
6 ff99SB-ILDN 9.599 9.570 9.441 9.278 7.601

ff99SB-PSN 8.537 8.505 8.378 8.211 6.651
ff03w 9.619 9.586 9.441 9.260 7.517



200

Table 6.20: Dimensionality estimation results across all levels of DFT smoothing using
a fractional amplitude cutoff for the (top) 100ns annealing (300K-600K-300K) and (bot-
tom) 250ns production (300K) MD simulations of GB1, Trp-cage, Nsp1, and Nup116
using three different forcefields: ff99SB-ILDN, ff99SB-PSN, and ff03w. Estimates were
obtained by taking the harmonic mean across small values of k = [2, 3, 4, 6].

Amplitude Smoothing Fraction
Annealing 0.00 0.01 0.05 0.10 0.50

G
B

1 ff99SB-ILDN 15.930 3.164 1.779 1.868 1.900
ff99SB-PSN 16.648 4.344 1.773 1.829 1.901
ff03w 17.440 2.941 1.820 1.896 1.900

Tr
p-

ca
ge ff99SB-ILDN 17.315 9.347 1.779 1.835 1.894

ff99SB-PSN 18.097 8.684 1.776 1.834 1.896
ff03w 17.950 5.338 1.818 1.870 1.900

N
sp

1 ff99SB-ILDN 19.134 4.660 1.793 1.882 1.899
ff99SB-PSN 19.189 5.681 1.795 1.842 1.897
ff03w 21.588 3.759 1.814 1.879 1.897

N
up

11
6 ff99SB-ILDN 19.644 5.510 1.809 1.867 1.899

ff99SB-PSN 19.934 4.729 1.813 1.875 1.897
ff03w 21.252 9.692 1.803 1.864 1.893

Production 0.00 0.01 0.05 0.10 0.50

G
B

1 ff99SB-ILDN 15.492 4.918 1.786 1.866 1.901
ff99SB-PSN 15.082 6.965 1.807 1.835 1.899
ff03w 16.668 4.035 1.866 1.898 1.901

Tr
p-

ca
ge ff99SB-ILDN 18.997 16.795 1.774 1.841 1.893

ff99SB-PSN 19.319 15.318 1.773 1.837 1.901
ff03w 21.642 7.639 1.850 1.884 1.902

N
sp

1 ff99SB-ILDN 19.594 9.054 1.791 1.878 1.902
ff99SB-PSN 19.953 10.965 1.808 1.844 1.899
ff03w 17.375 5.557 1.809 1.877 1.899

N
up

11
6 ff99SB-ILDN 17.129 8.121 1.811 1.864 1.899

ff99SB-PSN 14.649 5.604 1.820 1.872 1.898
ff03w 17.270 13.816 1.811 1.854 1.896

make it impossible to calculate a dimensionality of zero from inherently noisy systems.

Instead, the high-dimensionality of the noise allowed the folded or more frustrated states
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Table 6.21: Dimensionality estimation results across all levels of DFT smoothing us-
ing a fractional amplitude cutoff for the (top) 100ns annealing (300K-600K-300K)
and (bottom) 250ns production (300K) MD simulations of GB1, Trp-cage, Nsp1, and
Nup116 using three different forcefields: ff99SB-ILDN, ff99SB-PSN, and ff03w. Es-
timates were obtained by taking the harmonic mean across medium values of k =
[2, 3, 4, 6, 8, 16, 32, 64].

Amplitude Smoothing Fraction
Annealing 0.00 0.01 0.05 0.10 0.50

G
B

1 ff99SB-ILDN 15.947 5.268 1.242 1.183 1.162
ff99SB-PSN 16.779 6.813 1.326 1.216 1.163
ff03w 17.086 4.723 1.204 1.162 1.160

Tr
p-

ca
ge ff99SB-ILDN 17.306 11.379 1.301 1.192 1.163

ff99SB-PSN 17.873 10.989 1.288 1.188 1.162
ff03w 16.298 7.134 1.222 1.174 1.162

N
sp

1 ff99SB-ILDN 19.351 8.006 1.212 1.166 1.162
ff99SB-PSN 19.452 9.000 1.260 1.182 1.162
ff03w 21.306 6.439 1.193 1.167 1.162

N
up

11
6 ff99SB-ILDN 19.594 8.983 1.194 1.173 1.163

ff99SB-PSN 20.272 7.661 1.218 1.166 1.162
ff03w 21.175 13.156 1.264 1.171 1.162

Production 0.00 0.01 0.05 0.10 0.50

G
B

1 ff99SB-ILDN 12.543 7.052 1.303 1.206 1.164
ff99SB-PSN 12.409 8.400 1.381 1.232 1.165
ff03w 14.388 6.430 1.176 1.160 1.163

Tr
p-

ca
ge ff99SB-ILDN 15.450 14.152 1.373 1.208 1.162

ff99SB-PSN 15.882 13.526 1.379 1.199 1.163
ff03w 18.528 10.616 1.207 1.170 1.165

N
sp

1 ff99SB-ILDN 15.809 10.552 1.242 1.175 1.165
ff99SB-PSN 16.119 11.855 1.355 1.210 1.161
ff03w 13.216 6.552 1.221 1.167 1.163

N
up

11
6 ff99SB-ILDN 13.474 8.863 1.240 1.186 1.162
ff99SB-PSN 11.285 6.389 1.241 1.171 1.163
ff03w 13.638 11.555 1.386 1.190 1.161
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Table 6.22: Dimensionality estimation results across all levels of DFT smoothing us-
ing a fractional amplitude cutoff for the (top) 100ns annealing (300K-600K-300K)
and (bottom) 250ns production (300K) MD simulations of GB1, Trp-cage, Nsp1,
and Nup116 using three different forcefields: ff99SB-ILDN, ff99SB-PSN, and ff03w.
Estimates were obtained by taking the harmonic mean across large values of k =
[2, 3, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024].

Amplitude Smoothing Fraction
Annealing 0.00 0.01 0.05 0.10 0.50

G
B

1 ff99SB-ILDN 17.164 9.120 2.160 1.238 1.039
ff99SB-PSN 17.017 10.253 2.584 1.540 1.039
ff03w 17.819 8.044 1.757 1.074 1.047

Tr
p-

ca
ge ff99SB-ILDN 17.635 13.336 3.178 1.643 1.043

ff99SB-PSN 18.861 13.708 3.097 1.559 1.052
ff03w 16.094 9.197 1.833 1.234 1.043

N
sp

1 ff99SB-ILDN 18.208 11.374 1.909 1.157 1.046
ff99SB-PSN 22.348 14.335 2.647 1.495 1.041
ff03w 21.624 11.074 1.978 1.162 1.053

N
up

11
6 ff99SB-ILDN 21.127 14.319 2.077 1.276 1.033

ff99SB-PSN 22.477 14.250 2.219 1.338 1.040
ff03w 21.546 16.239 2.660 1.464 1.033

Production 0.00 0.01 0.05 0.10 0.50

G
B

1 ff99SB-ILDN 8.561 5.751 1.956 1.302 1.030
ff99SB-PSN 8.639 6.216 2.204 1.469 1.039
ff03w 11.105 7.350 1.533 1.053 1.030

Tr
p-

ca
ge ff99SB-ILDN 9.634 8.295 2.775 1.658 1.074

ff99SB-PSN 10.431 8.384 2.988 1.673 1.033
ff03w 12.934 8.926 1.829 1.264 1.027

N
sp

1 ff99SB-ILDN 10.286 7.109 1.970 1.164 1.026
ff99SB-PSN 11.260 8.507 2.317 1.566 1.066
ff03w 8.382 4.720 1.722 1.210 1.040

N
up

11
6 ff99SB-ILDN 9.599 6.827 1.991 1.305 1.053
ff99SB-PSN 8.537 5.788 1.817 1.281 1.042
ff03w 9.619 7.764 2.252 1.487 1.063
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of proteins folding to be predicted to have very high dimensionality relative to less frus-

trated, and dynamic intrinsically disordered proteins. In particular, even though one of

the natively folded proteins used in the study didn’t fold, it often assumed structural

motifs that were also very rigid and of high estimated dimensionality. Future work is

needed to ascertain if this result is consistent across other folding proteins, or the partic-

ular properties driving this effect in the simulations.

While dimensionality estimation has the potential to serve as a measure for the

classification of protein dynamics, it has not been rigorously tested on MD simulations.

The framework developed here provides a novel approach for addressing this concern

that is computationally efficient and highly predictive of algorithm efficacy. While the

polymer models studied here focused on noise and basic correlated motions, future

studies could address folding more specifically by using models where the links have

to cooperate to form helices and sheets or even simplified simulations methodologies

such as coarse-grained simulations [88] or elastic network models [89]. The framework

could also be used to compare different dimensionality estimation algorithms, uncov-

ering their relative strengths and weaknesses. Also, manifold smoothing techniques

besides the DFT approach investigated here may prove more useful[64], and their per-

formance could also be compared using the above framework. An additional future

aim is to apply these techniques to simulations of previously unstudied systems where

predictions can be be made concerning the underlying dynamics using dimensionality

estimation that can be verified via experiment.



Chapter 7

Conclusion

The application of machine learning and data mining techniques to molecular

dynamics (MD) simulations can provide useful tools for analyzing MD trajectories, but

the very high dimensionality of the space of molecular structures (up to three times the

number of atoms) means that research is needed to determine the appropriate methods.

Past research has focused on applying clustering methods to trajectories produced by

simulations of various biomolecules, but none have focused on a particular class of

proteins known as “unstructured” or “intrinsically disordered” proteins.

Experimental techniques for studying intrinsically disordered proteins have proven

useful for determining their general properties (e.g. radius of hydration, aggregation

propensity, etc.); however, they have not been able to ascertain structural information

with the same precision as is available for globular proteins. Certain disordered proteins

adopt rigid structure upon binding, and this has aided progress in determining how the

disordered nature of these proteins is advantageous from a functional or evolutionary

point of view. However, many disordered proteins function without undergoing such

transitions. Instead, the biologically relevant structural changes in these proteins occur

at a level of detail that is currently beyond the capabilities of modern experimental tech-

niques. Fortunately, simulation provides a reasonable means for assessing disordered

protein structure and dynamics in atomic detail and promises to be a key component in

204
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future analyses of disordered protein dynamics.

The unique physical properties of this class of proteins motivate a novel appli-

cation of polymer-based models combined with statistical, clustering, dimensionality

reduction and dimensionality estimation methods for the study of biomolecular simu-

lations. In particular, applying and extending these various techniques has helped to

elucidate certain properties of these proteins that are not accessible using standard low-

dimensional metrics. Ultimately, the development of robust computational methods for

analyzing non-equilibrium MD simulations will open the door to a new language for de-

scribing and understanding the increasingly vast amount of MD simulation results made

possible by continuing improvements in computer speeds and simulation algorithms.

For example, a key long-term goal of this work is a polymer-based metric of “degree-

of-unstructuredness” that could be used to categorize intrinsically disordered proteins in

the same way that fold types are currently used to categorize folded proteins (e.g. [90]).



Appendix A

Polymer Dimensionality Estimates

This appendix contains additional data tables for the polymer studies in from

Chapter 6. All of the tables presented here utilize the same nomenclature for identi-

fying the k nearest-neighbor values used calculate dimensionality estimates for their

respective system: small values of k = [2, 3, 4, 6], medium values of k = [8, 16, 32, 64],

and large values of k = [128, 256, 512, 1024]. Please see Section 6.2.1 for details on

the maximum likelihood estimator of dimensionality used to compute these values, and

Section 6.2.2 for details on how these models were constructed.

A.1 Semirigid Helix

This section presents a detailed breakdown of dimensionality estimates at differ-

ent scales of nearest neighbors for the semirigid helix model described in Section 6.2.2.

A.2 Half-folded Helix

This section presents a detailed breakdown of dimensionality estimates at differ-

ent scales of nearest neighbors for the half-folded helix model described in Section 6.2.2.
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Table A.1: Dimensionality estimates at different sets of k for the semirigid helix model
with N = 2000 structures of length 16 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 27 total degrees of
freedom.

Frequency Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 20.489 20.546 20.773 20.622 10.632
0.10 20.504 20.559 20.792 20.631 10.606
1.00 23.905 23.957 24.077 24.293 9.914
3.00 26.115 26.085 26.046 25.938 9.933
10.00 26.591 26.591 26.239 25.938 9.874

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 18.517 18.486 18.483 18.380 14.463
0.10 18.556 18.525 18.505 18.407 14.462
1.00 22.510 22.553 22.457 22.202 15.688
3.00 24.594 24.552 24.335 24.295 16.915
10.00 24.848 24.878 24.762 24.635 16.789

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 13.086 13.092 13.082 13.076 12.656
0.10 13.129 13.134 13.124 13.117 12.680
1.00 16.777 16.739 16.655 16.503 14.684
3.00 18.666 18.645 18.574 18.507 16.876
10.00 18.699 18.690 18.639 18.568 16.984
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Table A.2: Dimensionality estimates at different sets of k for the semirigid helix model
with N = 5000 structures of length 16 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 27 total degrees of
freedom.

Frequency Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 21.546 21.605 21.600 21.461 12.481
0.10 21.589 21.662 21.636 21.512 12.448
1.00 24.660 24.717 24.724 24.398 11.391
3.00 27.212 27.325 27.117 26.962 11.476
10.00 27.105 27.174 27.052 26.752 11.356

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 19.717 19.723 19.685 19.574 15.968
0.10 19.756 19.764 19.711 19.606 15.964
1.00 23.289 23.313 23.247 23.044 17.191
3.00 25.856 25.843 25.748 25.641 18.373
10.00 25.650 25.652 25.574 25.462 18.346

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 15.392 15.408 15.407 15.399 14.983
0.10 15.436 15.448 15.450 15.436 15.003
1.00 19.259 19.233 19.130 19.009 17.113
3.00 21.470 21.454 21.385 21.300 19.462
10.00 21.504 21.491 21.425 21.358 19.559
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Table A.3: Dimensionality estimates at different sets of k for the semirigid helix model
with N = 2000 structures of lengths 16 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 27 total degrees of
freedom.

Amplitude Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 20.489 20.488 20.432 20.525 20.126
0.10 20.504 20.502 20.450 20.507 20.666
1.00 23.905 23.904 23.976 24.050 19.066
3.00 26.115 26.116 26.063 25.952 18.258
10.00 26.591 26.592 26.557 26.605 18.465

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 18.517 18.517 18.535 18.596 18.357
0.10 18.556 18.555 18.570 18.591 18.437
1.00 22.510 22.511 22.505 22.542 17.015
3.00 24.594 24.596 24.599 24.579 18.491
10.00 24.848 24.847 24.839 24.808 17.820

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 13.086 13.086 13.082 13.092 12.923
0.10 13.129 13.129 13.125 13.132 12.919
1.00 16.777 16.778 16.776 16.753 11.870
3.00 18.666 18.666 18.667 18.660 14.892
10.00 18.699 18.700 18.696 18.696 14.342



210

Table A.4: Dimensionality estimates at different sets of k for the semirigid helix model
with N = 5000 structures of length 16 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 27 total degrees of
freedom.

Amplitude Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 21.546 21.546 21.548 21.654 21.065
0.10 21.589 21.589 21.611 21.665 21.334
1.00 24.660 24.661 24.652 24.766 19.999
3.00 27.212 27.213 27.208 27.089 17.027
10.00 27.105 27.105 27.076 27.089 17.454

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 19.717 19.718 19.728 19.732 19.463
0.10 19.756 19.756 19.756 19.775 19.499
1.00 23.289 23.289 23.288 23.303 18.043
3.00 25.856 25.855 25.840 25.797 17.021
10.00 25.650 25.649 25.642 25.672 17.242

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 15.392 15.391 15.393 15.386 15.313
0.10 15.436 15.436 15.437 15.427 15.318
1.00 19.259 19.260 19.260 19.237 13.880
3.00 21.470 21.469 21.468 21.459 15.345
10.00 21.504 21.504 21.502 21.496 15.469
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Table A.5: Dimensionality estimates at different sets of k for the semirigid helix model
with N = 2000 structures of length 20 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 35 total degrees of
freedom.

Frequency Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 24.388 24.406 24.798 24.539 9.196
0.10 24.423 24.423 24.825 24.576 9.174
1.00 29.612 29.660 29.220 28.903 9.130
3.00 32.015 32.070 32.004 31.764 9.194
10.00 33.027 32.972 33.268 32.905 9.065

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 22.013 22.006 21.916 21.935 15.131
0.10 22.058 22.055 21.991 21.966 15.130
1.00 27.001 26.964 26.778 26.499 17.069
3.00 29.734 29.693 29.791 29.633 18.409
10.00 30.007 30.032 29.957 29.938 18.407

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 15.260 15.260 15.247 15.286 14.723
0.10 15.310 15.308 15.296 15.335 14.756
1.00 19.607 19.589 19.512 19.334 17.087
3.00 21.889 21.859 21.787 21.696 19.782
10.00 22.014 22.009 21.932 21.853 19.808



212

Table A.6: Dimensionality estimates at different sets of k for the semirigid helix model
with N = 5000 structures of length 20 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 35 total degrees of
freedom.

Frequency Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 25.773 25.857 25.931 25.727 10.720
0.10 25.775 25.881 25.976 25.762 10.689
1.00 30.325 30.316 30.174 30.057 10.402
3.00 33.025 33.078 32.910 32.515 10.193
10.00 33.965 33.970 33.964 33.611 10.318

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 23.415 23.376 23.310 23.398 16.857
0.10 23.461 23.430 23.372 23.438 16.861
1.00 28.362 28.313 28.173 27.978 18.701
3.00 31.185 31.141 31.017 30.795 19.939
10.00 31.592 31.617 31.506 31.337 20.078

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 18.017 18.027 18.011 18.023 17.394
0.10 18.074 18.083 18.068 18.073 17.421
1.00 22.790 22.764 22.664 22.500 19.990
3.00 25.387 25.373 25.302 25.199 22.920
10.00 25.565 25.546 25.479 25.390 22.995
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Table A.7: Dimensionality estimates at different sets of k for the semirigid helix model
with N = 2000 structures of length 20 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 35 total degrees of
freedom.

Amplitude Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 24.388 24.387 24.398 24.495 24.604
0.10 24.423 24.425 24.437 24.473 24.644
1.00 29.612 29.613 29.644 29.675 24.060
3.00 32.015 32.014 32.014 32.140 23.474
10.00 33.027 33.027 33.004 32.834 23.055

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 22.013 22.014 22.009 21.958 21.632
0.10 22.058 22.057 22.063 22.039 21.837
1.00 27.001 27.000 27.015 27.015 21.301
3.00 29.734 29.733 29.731 29.745 21.714
10.00 30.007 30.007 30.004 29.942 21.631

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 15.260 15.260 15.262 15.282 15.108
0.10 15.310 15.310 15.310 15.319 15.165
1.00 19.607 19.607 19.611 19.597 14.594
3.00 21.889 21.889 21.885 21.881 16.893
10.00 22.014 22.014 22.012 22.022 16.767
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Table A.8: Dimensionality estimates at different sets of k for the semirigid helix model
with N = 5000 structures of length 20 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 35 total degrees of
freedom.

Amplitude Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 25.773 25.773 25.790 25.847 26.152
0.10 25.775 25.774 25.783 25.862 26.107
1.00 30.325 30.324 30.349 30.345 24.707
3.00 33.025 33.024 33.032 33.078 23.672
10.00 33.965 33.967 33.955 33.984 22.087

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 23.415 23.415 23.412 23.435 23.315
0.10 23.461 23.460 23.470 23.461 23.285
1.00 28.362 28.362 28.363 28.332 22.467
3.00 31.185 31.185 31.173 31.174 22.673
10.00 31.592 31.593 31.606 31.585 21.600

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 18.017 18.018 18.023 18.027 17.988
0.10 18.074 18.074 18.074 18.079 17.973
1.00 22.790 22.790 22.791 22.777 17.442
3.00 25.387 25.387 25.389 25.385 19.281
10.00 25.565 25.565 25.561 25.547 18.677
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Table A.9: Dimensionality estimates at different sets of k for the semirigid helix model
with N = 2000 structures of length 25 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 45 total degrees of
freedom.

Frequency Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 29.522 29.656 29.669 29.123 8.205
0.10 29.571 29.684 29.662 29.178 8.183
1.00 36.054 36.099 35.306 35.749 8.419
3.00 39.027 39.118 38.782 37.901 8.318
10.00 39.501 39.402 39.244 39.632 8.410

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 25.535 25.613 25.611 25.544 15.777
0.10 25.616 25.669 25.673 25.601 15.779
1.00 32.095 32.081 31.946 31.955 18.168
3.00 35.230 35.202 35.098 35.007 19.547
10.00 35.474 35.486 35.381 35.385 19.689

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 17.368 17.403 17.436 17.465 16.739
0.10 17.436 17.464 17.494 17.525 16.775
1.00 22.752 22.722 22.572 22.393 19.668
3.00 25.509 25.493 25.444 25.330 22.741
10.00 25.655 25.630 25.562 25.452 22.917
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Table A.10: Dimensionality estimates at different sets of k for the semirigid helix model
with N = 5000 structures of length 25 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 45 total degrees of
freedom.

Frequency Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 30.451 30.553 30.705 30.467 9.332
0.10 30.543 30.584 30.739 30.517 9.305
1.00 36.823 36.784 36.605 36.584 9.492
3.00 40.487 40.337 40.047 39.668 9.101
10.00 41.286 41.073 41.103 41.349 9.223

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 27.380 27.419 27.521 27.543 17.524
0.10 27.439 27.481 27.562 27.598 17.521
1.00 33.753 33.718 33.556 33.443 19.939
3.00 37.384 37.383 37.260 37.023 21.318
10.00 37.477 37.481 37.359 37.399 21.300

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 20.790 20.801 20.834 20.866 19.899
0.10 20.858 20.866 20.901 20.928 19.929
1.00 26.693 26.670 26.499 26.300 23.154
3.00 29.838 29.820 29.739 29.627 26.673
10.00 29.895 29.886 29.826 29.702 26.755
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Table A.11: Dimensionality estimates at different sets of k for the semirigid helix model
with N = 2000 structures of length 25 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 45 total degrees of
freedom.

Amplitude Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 29.522 29.521 29.543 29.527 29.230
0.10 29.571 29.572 29.609 29.564 29.714
1.00 36.054 36.055 36.073 35.911 27.570
3.00 39.027 39.029 39.122 38.938 27.502
10.00 39.501 39.502 39.461 39.601 28.727

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 25.535 25.535 25.525 25.423 25.552
0.10 25.616 25.615 25.612 25.500 25.527
1.00 32.095 32.096 32.090 32.075 24.198
3.00 35.230 35.228 35.226 35.263 25.468
10.00 35.474 35.474 35.492 35.458 26.544

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 17.368 17.369 17.371 17.360 17.313
0.10 17.436 17.436 17.434 17.423 17.359
1.00 22.752 22.752 22.751 22.760 16.422
3.00 25.509 25.509 25.511 25.491 19.362
10.00 25.655 25.654 25.641 25.639 19.812
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Table A.12: Dimensionality estimates at different sets of k for the semirigid helix model
with N = 5000 structures of length 25 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 45 total degrees of
freedom.

Amplitude Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 30.451 30.450 30.428 30.236 30.211
0.10 30.543 30.541 30.495 30.336 30.448
1.00 36.823 36.823 36.750 36.774 30.075
3.00 40.487 40.487 40.489 40.371 28.320
10.00 41.286 41.284 41.367 41.306 27.920

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 27.380 27.379 27.365 27.325 27.239
0.10 27.439 27.438 27.442 27.408 27.321
1.00 33.753 33.752 33.731 33.767 27.155
3.00 37.384 37.384 37.362 37.347 26.683
10.00 37.477 37.479 37.465 37.441 26.481

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 0.000 0.000 0.000 0.000 0.000
0.01 20.790 20.791 20.791 20.776 20.743
0.10 20.858 20.858 20.865 20.856 20.781
1.00 26.693 26.693 26.687 26.685 20.720
3.00 29.838 29.838 29.840 29.836 22.285
10.00 29.895 29.895 29.891 29.876 22.112
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Table A.13: Dimensionality estimates at different sets of k for the half-folded helix
model with N = 2000 structures of length 16 across all noise levels and all levels of
DFT smoothing using a fractional frequency cutoff. This polymer has 27 total degrees
of freedom, but only 16 are attributed to the unfolded region.

Frequency Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 20.489 20.546 20.773 20.622 10.632

0.01 20.455 20.274 20.036 20.462 10.723
0.10 14.554 14.669 14.991 14.777 11.551
1.00 15.354 15.252 15.198 15.462 9.858
3.00 16.573 16.458 16.478 16.517 10.776
10.00 16.573 16.458 16.478 16.517 10.776

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 18.517 18.486 18.483 18.380 14.463

0.01 18.086 18.028 17.925 18.015 14.266
0.10 13.289 13.278 13.222 13.294 11.873
1.00 14.710 14.725 14.607 14.575 12.056
3.00 16.345 16.374 16.223 16.215 13.267
10.00 16.345 16.374 16.223 16.215 13.267

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 13.086 13.092 13.082 13.076 12.656

0.01 12.631 12.624 12.629 12.640 12.223
0.10 9.670 9.669 9.675 9.655 9.471
1.00 11.864 11.848 11.784 11.690 10.601
3.00 13.327 13.315 13.280 13.243 12.251
10.00 13.327 13.315 13.280 13.243 12.251

A.3 Correlated Helix

This section presents a detailed breakdown of dimensionality estimates at differ-

ent scales of nearest neighbors for the correlated helix model described in Section 6.2.2.
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Table A.14: Dimensionality estimates at different sets of k for the half-folded helix
model with N = 5000 structures of length 16 across all noise levels and all levels of
DFT smoothing using a fractional frequency cutoff. This polymer has 27 total degrees
of freedom, but only 16 are attributed to the unfolded region.

Frequency Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 21.546 21.605 21.600 21.461 12.481

0.01 21.403 21.511 21.232 21.213 12.602
0.10 15.083 15.126 15.078 15.007 12.625
1.00 15.741 15.709 15.734 15.552 11.167
3.00 16.586 16.569 16.643 16.474 11.770
10.00 16.586 16.569 16.643 16.474 11.770

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 19.717 19.723 19.685 19.574 15.968

0.01 19.274 19.263 19.125 19.119 15.796
0.10 13.913 13.894 13.912 13.911 12.902
1.00 15.160 15.111 15.052 14.961 12.996
3.00 16.674 16.679 16.581 16.501 13.943
10.00 16.674 16.679 16.581 16.501 13.943

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 15.392 15.408 15.407 15.399 14.983

0.01 14.927 14.927 14.903 14.895 14.520
0.10 11.226 11.222 11.212 11.205 11.051
1.00 13.336 13.325 13.258 13.172 12.118
3.00 14.912 14.893 14.847 14.793 13.684
10.00 14.912 14.893 14.847 14.793 13.684
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Table A.15: Dimensionality estimates at different sets of k for the half-folded helix
model with N = 2000 structures of length 16 across all noise levels and all levels of
DFT smoothing using a fractional amplitude cutoff. This polymer has 27 total degrees
of freedom, but only 16 are attributed to the unfolded region.

Amplitude Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 20.489 20.488 20.432 20.525 20.126

0.01 20.455 20.453 20.485 20.521 15.820
0.10 14.554 14.550 14.240 14.247 14.005
1.00 15.354 15.348 15.358 15.309 13.962
3.00 16.573 16.570 16.601 16.635 10.125
10.00 16.573 16.570 16.601 16.635 10.125

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 18.517 18.517 18.535 18.596 18.357

0.01 18.086 18.086 18.097 18.038 14.119
0.10 13.289 13.287 13.086 13.022 12.919
1.00 14.710 14.706 14.709 14.708 12.842
3.00 16.345 16.342 16.350 16.369 10.611
10.00 16.345 16.342 16.350 16.369 10.611

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 13.086 13.086 13.082 13.092 12.923

0.01 12.631 12.631 12.629 12.602 10.134
0.10 9.670 9.670 9.584 9.554 9.482
1.00 11.864 11.862 11.863 11.861 9.506
3.00 13.327 13.326 13.326 13.332 9.706
10.00 13.327 13.326 13.326 13.332 9.706
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Table A.16: Dimensionality estimates at different sets of k for the half-folded helix
model with N = 5000 structures of length 16 across all noise levels and all levels of
DFT smoothing using a fractional amplitude cutoff. This polymer has 27 total degrees
of freedom, but only 16 are attributed to the unfolded region.

Amplitude Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 21.546 21.546 21.548 21.654 21.065

0.01 21.403 21.403 21.412 21.224 16.723
0.10 15.083 15.078 14.747 14.687 14.509
1.00 15.741 15.734 15.746 15.819 14.335
3.00 16.586 16.581 16.556 16.455 9.578
10.00 16.586 16.581 16.556 16.455 9.578

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 19.717 19.718 19.728 19.732 19.463

0.01 19.274 19.274 19.259 19.279 15.143
0.10 13.913 13.911 13.689 13.596 13.554
1.00 15.160 15.155 15.160 15.160 13.329
3.00 16.674 16.671 16.674 16.643 10.152
10.00 16.674 16.671 16.674 16.643 10.152

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 15.392 15.391 15.393 15.386 15.313

0.01 14.927 14.927 14.923 14.913 11.947
0.10 11.226 11.225 11.107 11.061 11.018
1.00 13.336 13.333 13.335 13.336 10.988
3.00 14.912 14.910 14.908 14.888 10.298
10.00 14.912 14.910 14.908 14.888 10.298
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Table A.17: Dimensionality estimates at different sets of k for the half-folded helix
model with N = 2000 structures of length 20 across all noise levels and all levels of
DFT smoothing using a fractional frequency cutoff. This polymer has 35 total degrees
of freedom, but only 20 are attributed to the unfolded region.

Frequency Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 24.388 24.406 24.798 24.539 9.196

0.01 23.814 23.930 23.518 23.889 9.654
0.10 17.538 17.208 17.364 17.030 11.614
1.00 19.079 19.021 18.902 18.576 10.821
3.00 20.601 20.530 20.349 20.284 10.522
10.00 20.314 20.300 20.092 20.436 10.174

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 22.013 22.006 21.916 21.935 15.131

0.01 21.087 21.051 21.075 21.151 15.095
0.10 15.435 15.454 15.496 15.400 13.245
1.00 17.772 17.802 17.744 17.531 14.055
3.00 19.568 19.566 19.497 19.418 14.900
10.00 19.564 19.591 19.557 19.500 14.839

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 15.260 15.260 15.247 15.286 14.723

0.01 14.611 14.599 14.611 14.653 14.112
0.10 11.031 11.037 11.027 11.043 10.891
1.00 13.740 13.724 13.644 13.569 12.305
3.00 15.498 15.481 15.428 15.382 14.152
10.00 15.532 15.521 15.477 15.418 14.191
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Table A.18: Dimensionality estimates at different sets of k for the half-folded helix
model with N = 5000 structures of length 20 across all noise levels and all levels of
DFT smoothing using a fractional frequency cutoff. This polymer has 35 total degrees
of freedom, but only 20 are attributed to the unfolded region.

Frequency Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 25.773 25.857 25.931 25.727 10.720

0.01 24.897 25.017 24.687 24.811 11.199
0.10 18.023 18.009 17.885 17.976 13.438
1.00 19.101 19.144 18.963 19.243 12.407
3.00 20.679 20.698 20.756 20.684 12.129
10.00 20.705 20.803 20.600 20.439 11.873

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 23.415 23.376 23.310 23.398 16.857

0.01 22.717 22.726 22.706 22.681 16.784
0.10 16.312 16.320 16.324 16.321 14.541
1.00 18.365 18.369 18.248 18.129 15.085
3.00 20.170 20.183 20.156 20.132 16.000
10.00 20.273 20.216 20.156 20.099 16.051

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 18.017 18.027 18.011 18.023 17.394

0.01 17.395 17.400 17.404 17.393 16.778
0.10 12.942 12.945 12.932 12.917 12.720
1.00 15.645 15.632 15.563 15.456 14.095
3.00 17.536 17.523 17.471 17.406 16.015
10.00 17.585 17.572 17.513 17.445 16.118
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Table A.19: Dimensionality estimates at different sets of k for the half-folded helix
model with N = 2000 structures of length 20 across all noise levels and all levels of
DFT smoothing using a fractional amplitude cutoff. This polymer has 35 total degrees
of freedom, but only 20 are attributed to the unfolded region.

Amplitude Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 24.388 24.387 24.398 24.495 24.604

0.01 23.814 23.813 23.758 24.108 19.321
0.10 17.538 17.538 17.238 17.158 17.365
1.00 19.079 19.073 19.047 19.033 16.567
3.00 20.601 20.597 20.532 20.610 14.421
10.00 20.314 20.310 20.260 20.317 14.188

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 22.013 22.014 22.009 21.958 21.632

0.01 21.087 21.088 21.075 21.118 17.080
0.10 15.435 15.433 15.229 15.160 15.111
1.00 17.772 17.767 17.761 17.756 15.046
3.00 19.568 19.564 19.555 19.561 14.316
10.00 19.564 19.561 19.548 19.586 13.887

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 15.260 15.260 15.262 15.282 15.108

0.01 14.611 14.612 14.612 14.611 11.846
0.10 11.031 11.030 10.929 10.897 10.865
1.00 13.740 13.738 13.735 13.725 10.986
3.00 15.498 15.496 15.496 15.492 12.066
10.00 15.532 15.530 15.527 15.525 11.781
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Table A.20: Dimensionality estimates at different sets of k for the half-folded helix
model with N = 5000 structures of length 20 across all noise levels and all levels of
DFT smoothing using a fractional amplitude cutoff. This polymer has 35 total degrees
of freedom, but only 20 are attributed to the unfolded region.

Amplitude Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 25.773 25.773 25.790 25.847 26.152

0.01 24.897 24.897 24.907 25.114 18.559
0.10 18.023 18.023 17.676 17.643 17.151
1.00 19.101 19.093 19.083 19.149 17.110
3.00 20.679 20.674 20.681 20.663 13.495
10.00 20.705 20.699 20.687 20.831 12.959

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 23.415 23.415 23.412 23.435 23.315

0.01 22.717 22.717 22.709 22.722 17.101
0.10 16.312 16.310 16.039 15.982 15.904
1.00 18.365 18.359 18.364 18.381 15.772
3.00 20.170 20.166 20.174 20.180 13.703
10.00 20.273 20.269 20.274 20.300 13.150

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 18.017 18.018 18.023 18.027 17.988

0.01 17.395 17.395 17.395 17.368 13.432
0.10 12.942 12.941 12.791 12.760 12.709
1.00 15.645 15.642 15.641 15.635 12.769
3.00 17.536 17.533 17.532 17.522 12.850
10.00 17.585 17.582 17.579 17.569 12.482
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Table A.21: Dimensionality estimates at different sets of k for the half-folded helix
model with N = 2000 structures of length 25 across all noise levels and all levels of
DFT smoothing using a fractional frequency cutoff. This polymer has 45 total degrees
of freedom, but only 24 are attributed to the unfolded region.

Frequency Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 29.522 29.656 29.669 29.123 8.205

0.01 28.179 27.939 27.853 27.947 8.361
0.10 19.178 19.177 19.113 18.810 10.970
1.00 22.140 21.891 22.052 21.741 10.333
3.00 24.355 24.099 23.722 23.333 10.313
10.00 24.596 24.501 24.366 24.298 10.049

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 25.535 25.613 25.611 25.544 15.777

0.01 24.689 24.613 24.687 24.664 15.732
0.10 17.475 17.434 17.401 17.312 14.000
1.00 20.399 20.404 20.323 19.999 15.021
3.00 22.921 22.873 22.817 22.649 16.264
10.00 22.972 22.935 22.807 22.621 16.200

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 17.368 17.403 17.436 17.465 16.739

0.01 16.712 16.691 16.714 16.767 16.149
0.10 12.317 12.327 12.324 12.314 11.952
1.00 15.473 15.460 15.382 15.258 13.611
3.00 17.458 17.445 17.395 17.333 15.956
10.00 17.511 17.499 17.434 17.368 15.998
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Table A.22: Dimensionality estimates at different sets of k for the half-folded helix
model with N = 5000 structures of length 25 across all noise levels and all levels of
DFT smoothing using a fractional frequency cutoff. This polymer has 45 total degrees
of freedom, but only 24 are attributed to the unfolded region.

Frequency Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 30.451 30.553 30.705 30.467 9.332

0.01 29.434 29.240 29.257 29.291 9.588
0.10 20.326 20.113 20.285 20.397 12.770
1.00 22.257 22.057 22.139 22.038 11.875
3.00 24.595 24.449 24.253 24.157 12.140
10.00 24.865 24.887 24.866 24.447 11.819

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 27.380 27.419 27.521 27.543 17.524

0.01 26.508 26.478 26.480 26.402 17.417
0.10 18.502 18.443 18.495 18.512 15.554
1.00 21.245 21.196 21.140 20.954 16.328
3.00 23.566 23.553 23.480 23.347 17.705
10.00 23.711 23.661 23.633 23.495 17.528

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 20.790 20.801 20.834 20.866 19.899

0.01 20.050 20.046 20.092 20.115 19.221
0.10 14.554 14.565 14.555 14.553 14.147
1.00 17.800 17.782 17.685 17.557 15.825
3.00 19.899 19.880 19.818 19.734 18.180
10.00 20.001 19.982 19.926 19.844 18.237
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Table A.23: Dimensionality estimates at different sets of k for the half-folded helix
model with N = 2000 structures of length 25 across all noise levels and all levels of
DFT smoothing using a fractional amplitude cutoff. This polymer has 45 total degrees
of freedom, but only 24 are attributed to the unfolded region.

Amplitude Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 29.522 29.521 29.543 29.527 29.230

0.01 28.179 28.183 28.209 28.195 21.806
0.10 19.178 19.176 18.881 18.814 18.751
1.00 22.140 22.130 22.147 22.221 18.665
3.00 24.355 24.351 24.370 24.179 17.111
10.00 24.596 24.590 24.583 24.482 16.336

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 25.535 25.535 25.525 25.423 25.552

0.01 24.689 24.690 24.738 24.660 19.057
0.10 17.475 17.471 17.248 17.187 17.084
1.00 20.399 20.393 20.388 20.410 16.921
3.00 22.921 22.916 22.926 22.874 16.587
10.00 22.972 22.968 22.957 22.942 16.269

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 17.368 17.369 17.371 17.360 17.313

0.01 16.712 16.711 16.707 16.705 13.088
0.10 12.317 12.316 12.199 12.143 12.161
1.00 15.473 15.470 15.471 15.461 12.093
3.00 17.458 17.455 17.457 17.448 13.520
10.00 17.511 17.509 17.506 17.500 13.411
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Table A.24: Dimensionality estimates at different sets of k for the half-folded helix
model with N = 5000 structures of length 25 across all noise levels and all levels of
DFT smoothing using a fractional amplitude cutoff. This polymer has 45 total degrees
of freedom, but only 24 are attributed to the unfolded region.

Amplitude Smoothing Fraction
Small k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 30.451 30.450 30.428 30.236 30.211

0.01 29.434 29.432 29.401 29.335 22.357
0.10 20.326 20.325 19.944 19.734 19.940
1.00 22.257 22.247 22.214 22.064 18.932
3.00 24.595 24.589 24.607 24.562 16.195
10.00 24.865 24.859 24.901 24.881 15.267

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 27.380 27.379 27.365 27.325 27.239

0.01 26.508 26.508 26.520 26.525 20.089
0.10 18.502 18.501 18.213 18.098 18.137
1.00 21.245 21.239 21.251 21.217 17.452
3.00 23.566 23.560 23.546 23.533 16.212
10.00 23.711 23.705 23.695 23.692 15.506

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ u
n
f
o
ld
e
d
) 0.00 20.790 20.791 20.791 20.776 20.743

0.01 20.050 20.050 20.051 20.013 15.468
0.10 14.554 14.553 14.388 14.329 14.293
1.00 17.800 17.796 17.793 17.778 13.755
3.00 19.899 19.895 19.896 19.885 14.651
10.00 20.001 19.997 19.996 19.988 14.250
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Table A.25: Dimensionality estimates at different sets of k for the correlated helix model
with N = 2000 structures of length 20 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 35 total degrees of
freedom, but 2 are attributed to large amplitude, correlated folding/unfolding dynamics.

Frequency Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.845 1.842 1.911 1.944 2.012
0.01 3.449 3.450 3.432 3.394 2.912
0.10 16.805 16.782 16.565 16.483 8.755
1.00 29.526 29.484 29.191 28.562 7.227
3.00 32.539 32.451 32.532 32.683 9.108
10.00 33.327 33.711 32.979 32.715 9.121

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.914 1.902 1.918 1.927 1.948
0.01 2.265 2.266 2.262 2.245 2.146
0.10 10.315 10.269 10.129 9.970 6.946
1.00 26.246 26.182 25.922 25.467 14.701
3.00 30.025 30.012 29.856 29.739 18.372
10.00 30.057 30.126 29.873 29.988 18.427

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.813 1.812 1.812 1.813 1.805
0.01 1.844 1.843 1.842 1.841 1.822
0.10 3.047 3.035 2.991 2.939 2.487
1.00 18.581 18.537 18.359 18.066 14.323
3.00 21.906 21.890 21.823 21.731 19.765
10.00 22.026 22.010 21.935 21.898 19.835
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Table A.26: Dimensionality estimates at different sets of k for the correlated helix model
with N = 5000 structures of length 20 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 35 total degrees of
freedom, but 2 are attributed to large amplitude, correlated folding/unfolding dynamics.

Frequency Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.879 1.910 1.949 2.002 1.965
0.01 5.246 5.226 5.107 5.013 3.847
0.10 18.924 18.995 18.885 18.820 10.886
1.00 30.517 30.412 30.154 29.732 8.205
3.00 33.347 33.401 33.338 33.296 10.217
10.00 34.096 33.955 33.698 33.534 10.360

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.895 1.880 1.910 1.931 1.961
0.01 2.650 2.644 2.635 2.616 2.388
0.10 13.559 13.533 13.384 13.215 9.861
1.00 27.699 27.677 27.445 27.136 16.232
3.00 31.107 31.089 30.997 30.917 20.017
10.00 31.430 31.475 31.380 31.315 20.078

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.871 1.870 1.871 1.872 1.862
0.01 1.942 1.941 1.938 1.935 1.900
0.10 4.576 4.550 4.459 4.353 3.400
1.00 21.875 21.833 21.648 21.357 17.481
3.00 25.393 25.363 25.301 25.205 22.920
10.00 25.535 25.527 25.460 25.378 23.029
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Table A.27: Dimensionality estimates at different sets of k for the correlated helix model
with N = 2000 structures of length 20 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 35 total degrees of
freedom, but 2 are attributed to large amplitude, correlated folding/unfolding dynamics.

Amplitude Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.845 1.989 1.979 1.996 1.973
0.01 3.449 2.848 3.050 2.414 1.989
0.10 16.805 16.004 6.487 6.128 2.407
1.00 29.526 29.517 29.225 28.184 4.878
3.00 32.539 32.541 32.557 32.561 22.640
10.00 33.327 33.328 33.316 33.042 23.918

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.914 1.943 1.977 1.998 1.906
0.01 2.265 2.141 2.233 2.099 1.908
0.10 10.315 9.368 3.762 3.685 2.003
1.00 26.246 26.243 26.135 25.202 3.309
3.00 30.025 30.025 30.000 29.944 21.527
10.00 30.057 30.055 30.081 30.121 22.289

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.813 1.797 1.746 1.746 1.657
0.01 1.844 1.814 1.767 1.754 1.657
0.10 3.047 2.785 1.919 1.925 1.664
1.00 18.581 18.581 18.502 17.548 2.845
3.00 21.906 21.906 21.906 21.896 16.890
10.00 22.026 22.026 22.022 22.028 17.142
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Table A.28: Dimensionality estimates at different sets of k for the correlated helix model
with N = 5000 structures of length 20 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 35 total degrees of
freedom, but 2 are attributed to large amplitude, correlated folding/unfolding dynamics.

Amplitude Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.879 2.083 1.972 2.016 2.021
0.01 5.246 3.708 3.696 3.983 2.040
0.10 18.924 17.864 7.799 7.497 3.720
1.00 30.517 30.510 30.200 28.936 4.796
3.00 33.347 33.347 33.348 33.374 22.952
10.00 34.096 34.095 34.067 34.053 22.515

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.895 1.996 2.000 2.015 2.000
0.01 2.650 2.383 2.442 2.586 2.003
0.10 13.559 12.238 5.131 4.975 3.163
1.00 27.699 27.701 27.627 26.572 3.332
3.00 31.107 31.106 31.092 31.110 22.403
10.00 31.430 31.428 31.424 31.410 22.134

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.871 1.860 1.841 1.851 1.906
0.01 1.942 1.895 1.882 1.909 1.906
0.10 4.576 3.865 2.247 2.279 2.291
1.00 21.875 21.875 21.788 20.552 4.204
3.00 25.393 25.393 25.388 25.379 19.206
10.00 25.535 25.535 25.536 25.525 19.016
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Table A.29: Dimensionality estimates at different sets of k for the correlated helix model
with N = 2000 structures of length 20 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 35 total degrees of
freedom, but 3 are attributed to large amplitude, correlated folding/unfolding dynamics.

Frequency Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.850 2.876 2.887 2.900 3.040
0.01 3.252 3.252 3.244 3.243 3.225
0.10 13.048 12.921 12.572 12.059 6.294
1.00 28.718 28.770 28.368 27.985 7.009
3.00 31.723 31.713 31.917 31.673 9.226
10.00 33.306 32.922 33.860 32.421 9.054

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.744 2.745 2.746 2.738 2.726
0.01 2.842 2.838 2.836 2.824 2.768
0.10 7.381 7.302 7.115 6.890 4.653
1.00 26.667 26.598 26.298 26.000 14.588
3.00 29.407 29.499 29.538 29.499 18.401
10.00 29.974 29.841 29.832 29.573 18.355

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.617 2.616 2.616 2.615 2.605
0.01 2.630 2.630 2.628 2.627 2.612
0.10 3.470 3.461 3.428 3.388 3.049
1.00 19.077 19.031 18.864 18.613 14.881
3.00 21.894 21.878 21.817 21.740 19.775
10.00 21.991 21.965 21.907 21.794 19.829
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Table A.30: Dimensionality estimates at different sets of k for the correlated helix model
with N = 5000 structures of length 20 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 35 total degrees of
freedom, but 3 are attributed to large amplitude, correlated folding/unfolding dynamics.

Frequency Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.846 2.854 2.870 2.866 2.952
0.01 3.429 3.420 3.419 3.393 3.245
0.10 15.438 15.347 15.073 14.699 7.879
1.00 30.196 30.157 29.834 29.504 7.877
3.00 33.196 33.446 33.708 33.477 10.181
10.00 33.765 33.730 33.914 33.569 10.218

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.839 2.839 2.839 2.835 2.846
0.01 3.008 3.002 2.996 2.982 2.924
0.10 9.789 9.742 9.518 9.241 6.203
1.00 27.903 27.850 27.733 27.401 15.907
3.00 31.300 31.284 31.193 31.013 19.960
10.00 31.644 31.628 31.550 31.374 19.999

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.700 2.700 2.699 2.697 2.686
0.01 2.724 2.723 2.721 2.718 2.697
0.10 4.201 4.185 4.126 4.056 3.474
1.00 22.255 22.207 22.028 21.751 17.688
3.00 25.424 25.403 25.337 25.225 22.931
10.00 25.529 25.514 25.444 25.331 23.020
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Table A.31: Dimensionality estimates at different sets of k for the correlated helix model
with N = 2000 structures of length 20 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 35 total degrees of
freedom, but 3 are attributed to large amplitude, correlated folding/unfolding dynamics.

Amplitude Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.850 3.069 3.286 3.375 3.537
0.01 3.252 3.229 3.412 3.768 3.538
0.10 13.048 11.653 5.144 5.261 4.927
1.00 28.718 28.728 28.733 28.579 5.996
3.00 31.723 31.723 31.712 31.494 21.912
10.00 33.306 33.304 33.330 33.350 23.890

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.744 2.729 2.713 2.753 2.769
0.01 2.842 2.769 2.733 2.843 2.768
0.10 7.381 6.293 3.128 3.242 3.109
1.00 26.667 26.666 26.576 25.355 2.939
3.00 29.407 29.407 29.427 29.397 21.177
10.00 29.974 29.972 29.960 29.915 22.240

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.617 2.597 2.469 2.380 2.177
0.01 2.630 2.603 2.471 2.386 2.177
0.10 3.470 3.233 2.544 2.473 2.299
1.00 19.077 19.076 18.989 17.783 2.850
3.00 21.894 21.894 21.890 21.865 16.438
10.00 21.991 21.991 21.987 21.990 17.204
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Table A.32: Dimensionality estimates at different sets of k for the correlated helix model
with N = 5000 structures of length 20 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 35 total degrees of
freedom, but 3 are attributed to large amplitude, correlated folding/unfolding dynamics.

Amplitude Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.846 2.968 3.095 3.156 3.253
0.01 3.429 3.234 3.440 3.966 3.255
0.10 15.438 12.829 5.934 5.846 3.890
1.00 30.196 30.186 30.224 27.900 4.607
3.00 33.196 33.200 33.193 33.123 22.433
10.00 33.765 33.768 33.783 33.839 22.001

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.839 2.859 2.932 2.931 2.814
0.01 3.008 2.932 3.021 3.158 2.815
0.10 9.789 7.505 3.832 3.885 3.045
1.00 27.903 27.895 27.708 25.711 3.193
3.00 31.300 31.299 31.276 31.258 21.999
10.00 31.644 31.644 31.632 31.680 21.431

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.700 2.663 2.542 2.495 2.649
0.01 2.724 2.673 2.552 2.526 2.649
0.10 4.201 3.573 2.691 2.662 2.721
1.00 22.255 22.254 22.093 19.951 3.604
3.00 25.424 25.423 25.424 25.418 18.976
10.00 25.529 25.529 25.530 25.524 18.490
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Table A.33: Dimensionality estimates at different sets of k for the correlated helix model
with N = 2000 structures of length 20 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 35 total degrees of
freedom, but 5 are attributed to large amplitude, correlated folding/unfolding dynamics.

Frequency Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.096 3.094 3.093 3.069 3.255
0.01 3.190 3.189 3.182 3.153 3.274
0.10 8.914 8.745 8.189 7.517 3.998
1.00 29.799 29.633 29.397 28.772 6.673
3.00 32.591 32.441 32.181 32.278 9.171
10.00 32.648 32.933 32.698 31.917 8.967

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.357 3.354 3.341 3.326 3.202
0.01 3.395 3.392 3.377 3.358 3.213
0.10 6.035 5.997 5.827 5.634 4.051
1.00 26.979 26.958 26.683 26.186 14.333
3.00 29.911 29.841 29.734 29.516 18.304
10.00 29.982 30.052 29.928 29.812 18.384

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.553 3.552 3.551 3.548 3.528
0.01 3.561 3.561 3.559 3.555 3.531
0.10 4.239 4.231 4.200 4.164 3.861
1.00 19.329 19.291 19.120 18.863 15.249
3.00 21.925 21.915 21.833 21.757 19.757
10.00 22.048 22.029 21.943 21.856 19.859
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Table A.34: Dimensionality estimates at different sets of k for the correlated helix model
with N = 5000 structures of length 20 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 35 total degrees of
freedom, but 5 are attributed to large amplitude, correlated folding/unfolding dynamics.

Frequency Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.534 3.534 3.536 3.525 3.697
0.01 3.661 3.660 3.650 3.626 3.721
0.10 10.653 10.473 9.832 9.016 4.501
1.00 30.536 30.392 29.746 29.266 7.473
3.00 33.140 33.108 33.124 33.156 10.265
10.00 33.638 33.763 33.521 33.288 10.256

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.773 3.769 3.757 3.743 3.605
0.01 3.825 3.820 3.803 3.784 3.621
0.10 7.391 7.332 7.120 6.853 4.748
1.00 28.222 28.204 27.924 27.550 15.653
3.00 31.255 31.219 31.170 30.969 19.982
10.00 31.561 31.579 31.527 31.201 19.979

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 4.001 4.001 3.999 3.996 3.973
0.01 4.014 4.013 4.011 4.008 3.979
0.10 5.095 5.082 5.034 4.978 4.508
1.00 22.593 22.556 22.378 22.106 18.140
3.00 25.422 25.409 25.332 25.231 22.911
10.00 25.561 25.543 25.466 25.363 22.989



241

Table A.35: Dimensionality estimates at different sets of k for the correlated helix model
with N = 2000 structures of length 20 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 35 total degrees of
freedom, but 5 are attributed to large amplitude, correlated folding/unfolding dynamics.

Amplitude Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.096 3.106 5.138 5.266 4.397
0.01 3.190 3.146 5.166 5.319 4.397
0.10 8.914 7.967 5.430 5.929 4.563
1.00 29.799 29.800 29.674 28.968 4.981
3.00 32.591 32.592 32.489 32.704 21.940
10.00 32.648 32.648 32.630 32.454 23.321

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.357 3.214 3.055 3.017 2.839
0.01 3.395 3.230 3.056 3.021 2.839
0.10 6.035 5.578 3.116 3.081 2.840
1.00 26.979 26.979 26.887 26.138 2.824
3.00 29.911 29.910 29.908 29.899 20.749
10.00 29.982 29.983 29.965 29.919 22.279

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.553 3.524 3.384 3.306 2.894
0.01 3.561 3.528 3.386 3.313 2.894
0.10 4.239 4.122 3.438 3.363 2.922
1.00 19.329 19.329 19.276 18.666 3.372
3.00 21.925 21.925 21.927 21.915 16.327
10.00 22.048 22.048 22.046 22.048 17.313
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Table A.36: Dimensionality estimates at different sets of k for the correlated helix model
with N = 5000 structures of length 20 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 35 total degrees of
freedom, but 5 are attributed to large amplitude, correlated folding/unfolding dynamics.

Amplitude Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.534 3.740 5.157 4.949 4.692
0.01 3.661 3.780 5.206 5.024 4.759
0.10 10.653 8.097 5.735 5.527 4.820
1.00 30.536 30.536 30.392 29.017 5.508
3.00 33.140 33.141 33.112 33.163 24.165
10.00 33.638 33.637 33.645 33.727 22.717

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.773 3.558 3.389 3.376 3.186
0.01 3.825 3.572 3.393 3.387 3.203
0.10 7.391 6.064 3.497 3.491 3.209
1.00 28.222 28.221 28.145 26.606 2.957
3.00 31.255 31.256 31.233 31.240 22.735
10.00 31.561 31.560 31.536 31.551 22.227

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 4.001 3.948 3.763 3.614 3.548
0.01 4.014 3.953 3.766 3.620 3.574
0.10 5.095 4.701 3.842 3.694 3.686
1.00 22.593 22.592 22.497 21.046 4.483
3.00 25.422 25.422 25.426 25.416 19.346
10.00 25.561 25.561 25.561 25.541 19.017
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Table A.37: Dimensionality estimates at different sets of k for the correlated helix model
with N = 2000 structures of length 25 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 45 total degrees of
freedom, but 2 are attributed to large amplitude, correlated folding/unfolding dynamics.

Frequency Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.844 1.843 1.913 1.945 2.015
0.01 3.453 3.465 3.468 3.448 2.945
0.10 18.742 18.771 18.708 18.356 9.053
1.00 34.645 34.937 34.453 34.713 6.859
3.00 39.223 39.250 39.804 39.813 8.387
10.00 39.992 40.315 40.021 39.930 8.416

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.913 1.900 1.918 1.926 1.948
0.01 2.265 2.265 2.263 2.251 2.144
0.10 11.302 11.235 11.023 10.785 7.156
1.00 30.791 30.766 30.595 30.190 15.518
3.00 35.501 35.491 35.298 35.083 19.582
10.00 35.819 35.843 35.481 35.346 19.770

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.813 1.812 1.813 1.813 1.805
0.01 1.844 1.843 1.842 1.841 1.821
0.10 3.050 3.037 2.992 2.940 2.482
1.00 21.146 21.074 20.824 20.491 15.834
3.00 25.491 25.477 25.401 25.279 22.761
10.00 25.661 25.647 25.592 25.495 22.898



244

Table A.38: Dimensionality estimates at different sets of k for the correlated helix model
with N = 5000 structures of length 25 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 45 total degrees of
freedom, but 2 are attributed to large amplitude, correlated folding/unfolding dynamics.

Frequency Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.885 1.911 1.950 2.003 1.966
0.01 5.318 5.242 5.137 5.074 3.839
0.10 21.625 21.652 21.608 21.068 11.018
1.00 36.506 36.685 36.029 36.283 7.608
3.00 41.317 41.183 41.120 41.413 9.187
10.00 41.158 41.229 40.974 40.722 9.237

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.895 1.879 1.909 1.932 1.961
0.01 2.654 2.649 2.637 2.620 2.386
0.10 15.071 15.055 14.851 14.657 10.421
1.00 32.949 32.941 32.652 32.291 17.185
3.00 37.817 37.721 37.626 37.470 21.284
10.00 37.640 37.637 37.446 37.345 21.342

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.871 1.870 1.871 1.871 1.862
0.01 1.941 1.940 1.937 1.934 1.899
0.10 4.643 4.614 4.518 4.404 3.405
1.00 25.171 25.115 24.859 24.493 19.675
3.00 29.873 29.839 29.779 29.638 26.653
10.00 29.953 29.930 29.843 29.733 26.779
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Table A.39: Dimensionality estimates at different sets of k for the correlated helix model
with N = 2000 structures of length 25 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 45 total degrees of
freedom, but 2 are attributed to large amplitude, correlated folding/unfolding dynamics.

Amplitude Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.844 1.980 1.977 1.995 1.971
0.01 3.453 2.905 3.082 2.491 1.981
0.10 18.742 18.047 6.819 6.567 2.290
1.00 34.645 34.635 34.426 33.502 4.661
3.00 39.223 39.221 39.242 39.219 28.350
10.00 39.992 39.992 40.037 39.937 28.042

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.913 1.944 1.978 1.999 1.903
0.01 2.265 2.151 2.235 2.131 1.905
0.10 11.302 10.117 3.746 3.826 1.981
1.00 30.791 30.792 30.737 29.310 3.287
3.00 35.501 35.501 35.519 35.460 26.187
10.00 35.819 35.819 35.833 35.904 25.685

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.813 1.796 1.745 1.745 1.655
0.01 1.844 1.813 1.765 1.756 1.655
0.10 3.050 2.784 1.913 1.935 1.661
1.00 21.146 21.144 21.049 19.564 2.729
3.00 25.491 25.491 25.490 25.462 19.853
10.00 25.661 25.660 25.660 25.649 19.448
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Table A.40: Dimensionality estimates at different sets of k for the correlated helix model
with N = 5000 structures of length 25 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 45 total degrees of
freedom, but 2 are attributed to large amplitude, correlated folding/unfolding dynamics.

Amplitude Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.885 2.084 1.974 2.015 2.022
0.01 5.318 3.757 3.903 4.221 2.046
0.10 21.625 20.422 8.691 7.986 3.629
1.00 36.506 36.521 36.937 34.930 4.673
3.00 41.317 41.314 41.414 41.313 27.450
10.00 41.158 41.157 41.193 41.068 28.519

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.895 1.996 2.001 2.015 2.000
0.01 2.654 2.384 2.495 2.683 2.004
0.10 15.071 13.440 5.361 5.107 3.057
1.00 32.949 32.940 32.804 30.840 3.069
3.00 37.817 37.817 37.807 37.842 26.246
10.00 37.640 37.640 37.639 37.621 26.888

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 1.871 1.860 1.841 1.852 1.905
0.01 1.941 1.894 1.886 1.920 1.905
0.10 4.643 3.903 2.250 2.274 2.129
1.00 25.171 25.172 25.027 22.942 3.965
3.00 29.873 29.873 29.864 29.850 22.110
10.00 29.953 29.953 29.949 29.928 22.403
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Table A.41: Dimensionality estimates at different sets of k for the correlated helix model
with N = 2000 structures of length 25 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 45 total degrees of
freedom, but 3 are attributed to large amplitude, correlated folding/unfolding dynamics.

Frequency Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.854 2.880 2.888 2.896 3.046
0.01 3.247 3.245 3.234 3.228 3.218
0.10 14.014 13.992 13.640 12.980 6.310
1.00 35.705 35.556 35.124 34.379 6.630
3.00 40.183 40.185 38.870 38.388 8.242
10.00 39.093 39.056 38.785 38.105 8.437

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.745 2.746 2.746 2.743 2.728
0.01 2.845 2.842 2.834 2.826 2.769
0.10 7.586 7.529 7.331 7.046 4.666
1.00 31.467 31.392 31.030 30.543 15.232
3.00 35.451 35.456 35.268 35.038 19.493
10.00 35.693 35.648 35.508 35.260 19.622

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.623 2.623 2.622 2.622 2.612
0.01 2.637 2.636 2.634 2.633 2.618
0.10 3.482 3.473 3.438 3.397 3.056
1.00 21.808 21.755 21.532 21.161 16.477
3.00 25.535 25.531 25.484 25.366 22.738
10.00 25.651 25.639 25.578 25.462 22.891
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Table A.42: Dimensionality estimates at different sets of k for the correlated helix model
with N = 5000 structures of length 25 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 45 total degrees of
freedom, but 3 are attributed to large amplitude, correlated folding/unfolding dynamics.

Frequency Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.843 2.850 2.866 2.864 2.955
0.01 3.419 3.413 3.409 3.381 3.239
0.10 16.854 16.764 16.406 15.938 8.003
1.00 36.004 36.011 35.803 35.503 7.246
3.00 41.219 41.190 40.870 40.767 9.067
10.00 40.630 40.636 41.000 40.259 9.257

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.843 2.841 2.840 2.835 2.844
0.01 3.008 3.005 2.995 2.982 2.923
0.10 10.254 10.194 9.917 9.607 6.264
1.00 33.076 33.061 32.756 32.335 16.732
3.00 37.638 37.704 37.511 37.371 21.218
10.00 37.661 37.630 37.544 37.374 21.285

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.701 2.701 2.700 2.699 2.687
0.01 2.725 2.725 2.723 2.720 2.698
0.10 4.214 4.198 4.137 4.066 3.474
1.00 25.656 25.605 25.356 24.976 19.863
3.00 29.885 29.862 29.787 29.669 26.664
10.00 29.948 29.938 29.858 29.739 26.722
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Table A.43: Dimensionality estimates at different sets of k for the correlated helix model
with N = 2000 structures of length 25 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 45 total degrees of
freedom, but 3 are attributed to large amplitude, correlated folding/unfolding dynamics.

Amplitude Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.854 3.071 3.292 3.380 3.538
0.01 3.247 3.245 3.446 3.926 4.182
0.10 14.014 12.209 5.291 5.483 4.547
1.00 35.705 35.700 36.160 34.013 5.881
3.00 40.183 40.184 40.195 40.036 28.896
10.00 39.093 39.092 39.096 39.121 27.488

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.745 2.728 2.712 2.756 2.764
0.01 2.845 2.772 2.740 2.867 2.948
0.10 7.586 6.393 3.152 3.314 3.046
1.00 31.467 31.466 31.345 29.636 2.906
3.00 35.451 35.451 35.459 35.433 26.568
10.00 35.693 35.691 35.705 35.611 25.855

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.623 2.604 2.475 2.385 2.188
0.01 2.637 2.611 2.479 2.399 2.245
0.10 3.482 3.239 2.563 2.510 2.230
1.00 21.808 21.808 21.717 20.119 2.753
3.00 25.535 25.535 25.530 25.528 19.932
10.00 25.651 25.651 25.647 25.639 19.628
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Table A.44: Dimensionality estimates at different sets of k for the correlated helix model
with N = 5000 structures of length 25 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 45 total degrees of
freedom, but 3 are attributed to large amplitude, correlated folding/unfolding dynamics.

Amplitude Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.843 2.969 3.104 3.159 3.261
0.01 3.419 3.223 3.464 3.758 3.263
0.10 16.854 13.638 6.109 6.016 3.912
1.00 36.004 35.998 35.952 33.716 4.625
3.00 41.219 41.224 41.254 41.161 28.273
10.00 40.630 40.632 40.586 40.628 28.776

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.843 2.856 2.934 2.932 2.817
0.01 3.008 2.931 3.026 3.103 2.817
0.10 10.254 7.720 3.885 3.937 3.033
1.00 33.076 33.077 32.895 30.389 3.080
3.00 37.638 37.639 37.657 37.607 26.504
10.00 37.661 37.663 37.665 37.702 27.628

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 2.701 2.664 2.541 2.493 2.651
0.01 2.725 2.674 2.552 2.515 2.651
0.10 4.214 3.577 2.700 2.668 2.713
1.00 25.656 25.654 25.466 23.082 3.708
3.00 29.885 29.885 29.889 29.858 22.135
10.00 29.948 29.948 29.948 29.936 23.029
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Table A.45: Dimensionality estimates at different sets of k for the correlated helix model
with N = 2000 structures of length 25 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 45 total degrees of
freedom, but 5 are attributed to large amplitude, correlated folding/unfolding dynamics.

Frequency Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.062 3.062 3.060 3.038 3.227
0.01 3.152 3.151 3.140 3.116 3.241
0.10 8.827 8.657 7.980 7.284 3.914
1.00 35.635 35.517 35.303 34.831 6.301
3.00 39.226 39.214 39.710 39.585 8.372
10.00 38.770 38.905 39.030 38.832 8.394

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.319 3.316 3.304 3.288 3.160
0.01 3.353 3.350 3.336 3.317 3.169
0.10 5.862 5.818 5.653 5.465 3.947
1.00 31.765 31.753 31.310 30.731 15.029
3.00 35.600 35.720 35.774 35.466 19.538
10.00 35.546 35.540 35.508 35.663 19.701

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.645 3.644 3.643 3.640 3.619
0.01 3.654 3.653 3.651 3.648 3.623
0.10 4.336 4.328 4.299 4.263 3.958
1.00 22.188 22.134 21.930 21.590 17.116
3.00 25.509 25.501 25.426 25.313 22.778
10.00 25.650 25.633 25.565 25.472 22.905
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Table A.46: Dimensionality estimates at different sets of k for the correlated helix model
with N = 5000 structures of length 25 across all noise levels and all levels of DFT
smoothing using a fractional frequency cutoff. This polymer has 45 total degrees of
freedom, but 5 are attributed to large amplitude, correlated folding/unfolding dynamics.

Frequency Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.494 3.494 3.493 3.483 3.645
0.01 3.613 3.610 3.595 3.577 3.671
0.10 10.818 10.609 9.810 8.859 4.425
1.00 36.644 36.724 36.556 35.883 6.879
3.00 40.479 40.444 40.617 40.748 9.139
10.00 40.186 40.251 39.972 40.154 9.246

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.742 3.737 3.722 3.707 3.568
0.01 3.788 3.783 3.765 3.747 3.582
0.10 7.270 7.209 6.979 6.707 4.643
1.00 33.528 33.460 33.135 32.693 16.427
3.00 37.463 37.434 37.480 37.345 21.177
10.00 37.328 37.355 37.245 37.239 21.364

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 4.054 4.053 4.050 4.048 4.024
0.01 4.066 4.066 4.063 4.059 4.029
0.10 5.129 5.116 5.067 5.012 4.546
1.00 26.200 26.142 25.891 25.526 20.498
3.00 29.865 29.846 29.769 29.639 26.619
10.00 29.931 29.912 29.839 29.725 26.774
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Table A.47: Dimensionality estimates at different sets of k for the correlated helix model
with N = 2000 structures of length 25 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 45 total degrees of
freedom, but 5 are attributed to large amplitude, correlated folding/unfolding dynamics.

Amplitude Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.062 3.076 5.269 5.411 4.487
0.01 3.152 3.120 5.300 5.557 4.487
0.10 8.827 7.815 5.527 6.143 4.791
1.00 35.635 35.630 36.056 35.185 5.317
3.00 39.226 39.227 39.299 39.423 28.758
10.00 38.770 38.770 38.801 38.883 27.931

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.319 3.175 3.003 2.964 2.818
0.01 3.353 3.185 3.002 2.971 2.818
0.10 5.862 5.403 3.048 3.019 2.854
1.00 31.765 31.763 31.737 30.770 2.769
3.00 35.600 35.600 35.586 35.630 26.521
10.00 35.546 35.546 35.553 35.538 25.931

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.645 3.616 3.472 3.380 2.932
0.01 3.654 3.621 3.473 3.389 2.932
0.10 4.336 4.220 3.534 3.444 2.976
1.00 22.188 22.188 22.141 21.380 3.414
3.00 25.509 25.509 25.512 25.498 19.750
10.00 25.650 25.650 25.659 25.641 19.575
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Table A.48: Dimensionality estimates at different sets of k for the correlated helix model
with N = 5000 structures of length 25 across all noise levels and all levels of DFT
smoothing using a fractional amplitude cutoff. This polymer has 45 total degrees of
freedom, but 5 are attributed to large amplitude, correlated folding/unfolding dynamics.

Amplitude Smoothing Fraction
0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.494 3.702 5.288 5.051 4.817
0.01 3.613 3.741 5.322 5.140 4.817
0.10 10.818 8.097 5.864 5.664 5.165
1.00 36.644 36.649 36.525 35.517 5.585
3.00 40.479 40.480 40.474 40.242 28.534
10.00 40.186 40.184 40.191 40.085 29.382

Med. k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 3.742 3.514 3.344 3.335 3.170
0.01 3.788 3.526 3.346 3.344 3.170
0.10 7.270 5.943 3.447 3.456 3.236
1.00 33.528 33.518 33.245 31.877 3.027
3.00 37.463 37.462 37.477 37.459 27.052
10.00 37.328 37.328 37.350 37.279 27.585

Large k 0.00 0.01 0.05 0.10 0.50

N
oi

se
(σ
θ
,φ

) 0.00 4.054 3.998 3.799 3.637 3.549
0.01 4.066 4.003 3.801 3.641 3.549
0.10 5.129 4.743 3.882 3.720 3.658
1.00 26.200 26.196 26.104 24.679 4.446
3.00 29.865 29.864 29.867 29.850 22.539
10.00 29.931 29.930 29.929 29.929 22.912
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