
152 Chapter 3 Data Representation

(a) Writeafunctiontoreorder e l ement [] so that e l ement[i] $

e 1 emen t [i + 1] for all i. Your function mu.st have time complex
ity O(s * 1 engt h) where s is the size of each element. Its space com
plexity should be O(s). Show that this is the case.

(b) Test the correctness of your function.

3.6 SIMULATING POINTERS

In most applications, we can implement the desired linked and indirect address
ing representations using dynamic allocation and C++ pointers. At times, how
ever, it is more convenient and efficient to use an array of nodes and simulate
C++ pointers by integers that are indexes into this array.

Suppose we use an array node, each element of which has the two fields
data and 1 ink. The nodes are node [0] , node [1] , · · ·, node [
NumberOfNodes-1]. We shall refer to node [i] as node i . Now if a
chain c consists of nodes 10, 5, and 24 (in that order), we shall have c = 10
(pointer to first node on the chain c is of type int); node [10] . 1 ink = 5
(pointer to second node on chain); node [5] . l ink = 24 (pointer to next
node); and node [2 4] . 1 i nk = -1 (indicating that node 24 is the last node on
the chain). When drawing the chain, the links are drawn as arrows in the same
way as when C++ pointers are used (Figure 3.12).

data link

c =lO ~ I ~ \ ~~' ~j-~1 I
node[l0] node[S] node [24]

Figure 3.12 Chain using simulated pointers

To complete the simulation of pointers, we need to design procedures to
allocate and deallocate a node. Nodes that are presently not in use will be kept
in a storage pool. Initially, this pool contains all the nodes
node [0 : NumberOfNodes - 1] . Allocate takes nodes out of this pool,
one at a time. Deallocate puts nodes into this pool one at a time. Hence
Allocate and Deallocate , respectively, perform deletes and inserts on
the storage pool and are equivalent to the delet e and new functions of C++.
These functions can be performed efficiently if the storage pool is set up as a
chain of nodes (as in Figure 3.13). This chain is called the available space list.
It contains all nodes that are currently free. first is a variable of type i nt

Section 3.6 Simulating Pointers 153

that points to the first node on this chain. Additions to and deletions from this
chain are made at the front.

first--{]-- · ·· ~

Figure 3.13 Available space list

To implement a simulated pointer system, we define the classes S irnNode
and SimSpace as in Program 3.27.

t emplate <cl a ss T>
class SirnNode {

friend SimSpace<T> ;
pr i vate :

T data ;
i nt link ;

} ;

templat e <class T>
class SimSpace {

} ;

publ i c :
Simspace(int MaxSpaceSize = 100) ;
-S i mSpace() {delete [] node ; }
int Allocate() ; // al l ocate a node
void Deallocate(int & i) ; // deallocat e node i

private : ~
int NumberOfNodes, first ;
SirnNode<T> *node ; // array of nodes

Program 3.27 Class definition for simulated pointers

3.6.1 SimSpace Operations

Since all nodes are initially free, the available space list contains NumberO f -
Nodes nodes at the time it is created. Program 3.28 initializes the available
space list. Programs 3.29 and 3.30 perform the Allocate and De a l lo
cat e operations .

154 Chapter 3 Data Representation

temp l ate<class T>
SimSpace<T> : : SimSpace(int MaxSpaceSize)
{II Constructor .

NumberOfNodes = MaxSpaceSize ;
node= new S i mNode<T> [NumberO fNodes];
II initialize available space l ist
II create a chain of nodes
for (inti= O; i < NumberOfNodes - 1 ; i++)

node [i] .link = i+l;
II l ast node of chain
node[NumberOfNodes-1] .l ink = -1;
II first node of chain
first = 0 ; \

Program 3.28 Initialize available space list

template<c l ass T>
int SimSpace<T> : :Allocate()
{II Allocate a free node .

if (first== -1) throw NoMem();
inti= f irst ;
first= node[i] .link;

II allocate first nod e

return i;
}

// first p oint s

II free node

Program 3.29 Allocate a node using simulated pointers

template<class T>
vo i d SimSpace<T> : : Deallocate(int& i)
{II Free node i .

}

II make i first node on avail list
node[i] . link= first ;
f irst= i ;
i = - 1 ;

Program 3.30 Deallocate a node with simulated pointers

to n e xt

Section 3.6 Simulating Pointers 155

We readily see that the three functions have time complexity 0(Num
berO f Nodes), 0(1), and 0(1), respectively. We can reduce the run time of the
constructor (Program 3.28) by maintaining two available space lists. One con
tains all free nodes that haven't been used yet. The second contains all free
nodes that have been used at least once. Whenever a node is deallocated, it is
put onto the second list. When a new node is needed, we provide it from the
second list in case this list is not empty. Otherwise, we attempt to provide it
from the first list. Let firs t 1 and f i r st2, respectively, point to the front of
the first and second space lists. Because of the way nodes are allocated, the
nodes on the first list are n ode [i] , f irs tl ~ i < NumberO fNo des .
The code to deallocate a node differs from Program 3.30 only in that all
occurences of the variable f irst are replaced by first2 . The new con-,.
structo(and allocation codes are given in Programs 3.31 and 3.32. For these
codes to work, we make the integer variables fir s tl and fi rst 2 private
members of SimSpace.

t e mp l a t e<c lass T>
Si mSpace<T> : : S i mSpace(int MaxSp aceS i ze)
{// Dual ava i labl e l ist c onstructor .

NumberOfNode_s = MaxSpaceSi ze;
n ode = n ew SimNode<T> [Numb e r OfNodes];
// ini tial i ze availab l e space li s t s
f i rstl = O;
£ irs t 2 = - l;

Program 3.31 Initialization of dual available space list

temp l ate<class T>
int SimSpace <T> : : Allocate()
{// Allocate a free node .

if (f irs t 2 == - 1) { // 2nd l i s t empty
i f (f irst l == NumberOfNo d es) t h r ow NoMem ();
return f{rs tl+ + ; }

// al l ocate f i r s t n ode of chain
inti= f i rs t 2 ;
first 2 = nod e[i] .l ink;
return i ;

Program 3.32 Dual available space list version of Allocate

156 Chapter 3 Data Representation

We expect the dual available space list of Programs 3.31 and 3.32 to pro
vide better performance than the single space list version in most applications.
We make the following observations:

• Program 3.32 takes the same time as does Program 3.29 except when the
node is to be provided from the first list. This exception occurs at most
NumberOfNodes times. The extra time spent on these cases is balanced
by the savings during initialization. In fact, we will frequently need fewer
than NumberOfNodes nodes (especially during debugging runs and in
software designed to handle problems with widely varying instance charac
teristics), and the dual scheme will be faster.

• The reduction in the initialization time is very de_sirable in an interactive
environment. The startup time for the program is significantly reduced.

• When the single list scheme is in use, chains can be built without explicitly
setting the link fields in any but the last node because the ,,appropriate link
values are already present in the nodes (see Figure 3.13). 'This advantage
can also be incorporated into the dual available space list scheme by writ
ing a function Get (n) that provides a chain with n nodes on it. This
function will explicitly set links only when nodes are taken from the first
list.

• Chains can be disposed more efficiently using either of these schemes than
when C++ pointers are used. For instance, if we know the front f and end
e of a chain, all nodes on it are freed by the following statements:

node[e] . link = first ; f i rst = f ;

• If c is a circular list, then all nodes on it are disposed in 0(1) time using
Program 3.33. Figure 3.14 shows the link changes that take place.

temp l ate<class T>
void SimSpace<T> : : DeallocateCircular(int& c)
{// Deallocate the circular list c .

if (c ! = -1) {
int next= node[c] .link ;
node [c] . link = first ;
firs t = next ;
C = - 1 ;
}

Program 3.33 Deallocate a circular lis t

Section 3.6 Simulating Pointers 157

first;, first

c node[c].link

Figure 3.14 Deallocating a circular list

3.6.2 Chains Using Simulated Pointers

We may define a class for chains using the simulated space S (see Program
3.34). S is declared as a static member so that all simulated chains of the
same type T share the same simulated space. Programs 3.35 to 3.38 give the
code for the public methods other than Search and Output . The code
assumes that S imChain has been declared a friend of both SimNode and
SimSpace. Notice the similarity between these codes and the codes for the
corresponding members of Chain. Program 3.39 gives a sample program that
uses a simulated chain. In this program s imul . h and schain. h are files
that contain the codes for SimSpace and SimChain, respectively.

template<class T>
class SimChain {

} ;

public :
SimChain() {first = -1 ; }
-SimChain () {Destroy () ; }
vo id Destroy(); // make list null
int Length() con s t;
bool Find(int k , T& x) const;
int Search(const T& x) const;
SimChain<T>& De l e t e (int k, T& x) ;
SimChain<T>& Insert(int k, const T& x) ;
void Output(ostream& out) const ;

private :
int first; / / index of first node
static SimSpace<T> S ;

Program 3.34 Class definition for simulated chains

158 Chapter 3 Data Representation

template<class T>
void SimChain<T>: :Destroy()
{// Deallocate chain nodes.

}

int next;
while (first != -1) {

next= S.node[first] .link;
S.Deallocate(first);
first= next;}

template<class T>
int SimChain<T>::Length() const
{// Return the number of elements in the chain.

int current = first, // chain.node cursor

}

len = O; // element counter
while (current != -1) {

current= S.node[current] .link;
len++ ;}

return len;

Program 3.35 Destructor and length using simulated pointers

template<class T>
bool SimChain<T>: :Find(int k, T& x) const
{// Set x to the k'th element of the chain.

}

// Return false if no k ' th; retur·n true otherwise.
if (k < 1) return false;
int current = first, // cursor for chain nodes

index= 1; // index of current node
// move current to k ' th node
while (index< k && current != -1) {

current= S.node[current] .link;
index++;}

// verify that we got to the k'th node
if (current ! = -1) {x = S. node [curxent] . data;

return true ;}
return false; // no k'th element

. Program 3.36 Find using simulated pointers l

Section 3.6 Simulating Pointers 159

template<class T>
SimChain<T>& SimChain<T>::Delete(int k, T& x)
{II Set x to the k'th element and delete it.
II Throw OutOfBounds exception if no k'th element.

if (k < 1 I I first == -1)
throw OutOfBounds(); II no k'th

II p will eventually point to k'th node
int p = first;

II move p to k'th & remove from chain
if (k r= 1) II p already at k'th

first= S.node[first] .link; II remove from chain
else { II use q to get to k-l 1 st

int q = first;
for (int index= 1; index< k - 1 && q != -1;

index++)
q = S.node[q] .link;

II verify presence of k'th element
if (q == -1 I I S.node[q] .link== -1)

throw OutOfBounds(); II no k'th

II make p point to k'th element
p = S.node[q] .link;

II remove k 1 th element from chain
S.node[q] .link= S.node[p] .link;
}

II save k 1 th element and free node p
x = S.node[p] .data;
S.Deallocate(p);
return *this;·

Program 3.37 Delete using simulated pointers

160 Chapter 3 Data Representation

template<c lass T>
SimChain<T>& S i mChain<T>: : Insert(int k, const T& x)
{II Insert x after t he k ' th element .
II Throw OutOfBounds exception if no k'th element .
II Pass NoMem ex ception if inadequate space .

if (k < 0) throw OutOfBounds() ;

II define a cursor p that wi ll
II eventua lly point to k ' th node
int p = first;

II move p to k ' th node
for (int index= l ; index< k && p ! = -1 ;

index++)
p = S . node[p] . link ;

II verify presence of k ' th element
i f (k > 0 && p == -1)

throw OutOfBounds() ;

II prepare a new node for insertion
int y = S . Al l ocate() ;
S . node[y] . data = x ;

II inse7t the new node into the chain
II fi~t check if the new node i$ to be t he
II first one in the chai n
if (k) {/I insert after p

S . node[y] . link= S.node[p] .link;
S . node [pl . link = y ; }

else {II insert as first element
S.node [y] . l i nk= first ;
fir st = y ; }

return *this;

Program 3.38 Insert using simulated pointers

#include <iostream.h>
#include "schain .h"

Section 3.6 Simulating Pointers 161

SimSpace<int> SimChain<int >: : S ;

void ma in (void}.
{

int x ;
SimChain<int> c;
cout << "Chai n length is << c .Length() << endl;
c. Insert (0, 2) . Insert (1, 6) ;
cout << "Chain length is "<< c.Length() << endl;
c .Find (l ,x) ;
cout <<"First element is
c . De 1 et e (1 , x) ;

<< x << endl;

cout << "Deleted " << x << endl;
cout << "New length i s " << c.Length() << endl;
cout << "Position of 2 is " << c . Search(2) << endl;
cout << "Posit i on of 6 i s " << c. ~earch (6) << end l;
c.Insert(0,9) .Insert(l , 8) .Insert(2 , 7) ;
cout << "Current chain is "<< c << endl;
cout << "I ts length is " << c.Length() << endl;

Program 3.39 Using a simulated chain

EXERCISES

67. Develop an iterator class Simiterator for the class SimChain. See
Program 3.18 for the definition of an iterator class defined for Chains
(Program 3.8). Simiterator should contain the same functions as does
Ch aini ter ator. Write and test your code.

68. (a) Modify the_class SimSpac e so that Allocate returns a pointer
to node [i J rather than the index i. Similarly, Deallocate
takes as input a pointer to the node that is to be deallocated.

(b) Rewrite the code for SimChain using the SimSpace codes of
(a). Notice the similarity between your new code and that for the
class Cha in.

69. (a) Modify the definition of the class SirnNode so that it contains a
static member S of type SimSpace<T>. All nodes of the type
SimSpace<T> can now share the same simulated space. Overload

162 Chapter 3 Data Representation

the functions new and delet e so as to get/return SirnNode s
from/to the simulated space s.

(b) Suppose that Si mSpace is implemented as in Exercise 68 and that
Si mNode is as in (a). Change the code for the class Chain (Pro
gram 3.8) so that it works properly using SirnNodes in place of
Ch a i nNode s. Test your code and perform run-time measurements
to determine which version of Chai n is faster.

70. Assume that a chain is represented using simulated pointers. The nodes are
of type Si mNode .

(a) Write a procedure that uses the insertion sort method to sort the chain
into nondecreasing order of the field data.

(b) What is the time complexity of your code? In case it isn't O(n 2
),

where n is the chain length, rewrite the code to have this complexity.

(c) Test the correctness of your code.

71. Do Exercise 70 using selection sort.

72. Do Exercise 70 using bubble sort.

73. Do Exercise 70 using rank sort.

74. Calls to the functions n ew and del et e are usually quite expensive and
we can often improve the run time of our code by replacing the use of
delete by a call to our own deallocating function which saves the

. deleted node on a chain of free nodes. Calls to new are replaced by calls
to our own node allocator which invokes new only when the free node
chain is empty. Modify the class Chain (Program 3.8) to operate in this
way. Write functions to allocate and deallocate a node as described, and to
initialize the chain of free nodes. Compare the run times of the two ver
sions of the class Chain . Comment on the merits/demerits of the new
implementation.

75. Consider the operation XOR (exclusive OR, also written as EB) defined as
below (for i and j binary):

. EB . _ [O if i and j are identical
1 1 - 1 otherwise

The XOR of two binary strings i and j is obtained by take the XOR of
corresponding bits of i and j. For example, if i = 10110 and j = 01100, then
i XORj = i EB j = 11010. Note that

a EB (a EB b) = (a EB a) EB b = b

and

(a EB b) EB b = a EB (b EB b) = a

Section 3.7 A Comparison 163

This observation gives us a space-saving device for storing the right and
left links of a doubly linked list. We assume that the available nodes are in
an array node and that the node indexes are 1, 2, · · · . So node [0] is
not used. A NULL link can now be represented as a zero rather than as -1.
Each node has two fields: d a ta and l ink. If 1 is to the left of node
x and r is to its right, then 1 ink(x) = 1 EB r. For the left-most node
1 = 0, and for the right-most node r = 0. Let (1 , r) be a doubly linked list
represented in this way; 1 points to the left-most node and r points to the
right-most node in the list.

(a) Write a function to traverse the doubly linked list (1, r) from left
to right, listing out the contents of the dat a field of each node.

(b) Write a function to traverse the list from right to left, listing out the -
contents of the data field of each node.

(c) Test the correctness of your codes.

3.7 A COMPARISON

The table of Figure 3 .15 compares the asymptotic complexity of performing vari
ous functions on a linear list, using each of the four representation methods dis
cussed in this chapter. In this table s and n, respectively, denote s i z e o f (T)
and the list length. Since the asymptotic complexity of the operations is the
same when C++ pointers and simulated pointers are used, the table contains a
single row for both.

Function
Representation Find kth Delete kth Insert after kth

Formula (3.1) 0(1) O((n - k)s) O((n -k)s)

Linked List O(k) O(k) O(k + s)
(C++ & Simulated)

Indirect 0(1) O(n -k) O(n -k)

Figure 3.15 Comparison of four representation methods

Data Structures, Algorithms,
and Applications in C++

Sartaj Sahni

University of Florida

r.wce
lia McGraw-Hill

Boston Burr Ridge , IL Dubuque, IA Madison, WI New York San Francisco St. Louis

Bangkok Bogota Caracas Lisbon London Madrid Mexico City Milan New Delhi Seoul

Singapore Sydney Taipei Toronto

	SimulatedPointers
	1006_001

