
Memory Layout of a C Program

Historically, a C program has been composed of the following pieces:

Text segment, the machine instructions that the CPU executes. Usually, the text
segment is sharable so that only a single copy needs to be in memory for
frequently executed programs, such as text editors, the C compiler, the shells,
and so on. Also, the text segment is often read-only, to prevent a program from
accidentally modifying its instructions.

Initialized data segrnent, usually called simply the data segment, containing
variables that are specifically initialized in the program. For example, the C
declaration

int maxcount = 99 ;

appearing outside any function causes this variable to be stored in the initialized
data segment with its initial value.

Uninitialized data segment, often called the "bss" segment, named after an
ancient assembler operator that stood for "block started by symbol." Data in
t h s segment is initialized by the kernel to arithmetic 0 or null pointers before the
program starts executing. The C declaration

long sum[10001 ;

appearing outside any function causes this variable to be stored in the
uninitialized data segment.

Stack, where automatic variables are stored, along with dormation that is saved
each time a function is called. Each time a function is called, the address of
where to return to and certain information about the caller's environment, such
as some of the machine registers, are saved on the stack. The newly called
function then allocates room on the stack for its automatic and temporary
variables. This is how recursive functions in C can work. Each time a recursive
function calls itself, a new stack frame is used, so one set of variables doesn't
interfere with the variables from another instance of the function.

Heap, where dynamic memory allocation usually takes place. Historically, the
heap has been located between the uninitialized data and the stack.

Figure 7.6 shows the typical arrangement of these segments. This is a logical picture of
how a program looks; there is no requirement that a given implementation arrange its
memory in this fashion. Nevertheless, this gves us a typical arrangement to describe.
With Linux on an Intel x86 processor, the text segment starts at location 0x0 8 0 4 8 0 0 0,
and the bottom of the stack starts just below oxcoo 000 00. (The stack grows From
higher-numbered addresses to lower-numbered addresses on this particular
architecture.) The unused virtual address space between the top of the heap and the top
of the stack is large.

Several more segment types exist in an a . out , containing the symbol table, debugging
information, linkage tables for dynamic shared libraries, and the like. These additional
sections don't get loaded as part of the program's image executed by a process.

Note from Figure 7.6 that the contents of the uninitialized data segment are not
stored in the program file on disk. This is because the kernel sets it to 0 before the
program starts turning. The only portions of the program that need to be saved in the
program file are the text segment and the initialized data.

high

I lruhahzed data I

low address
1 text 1

command-line arguments
and environment variables

initialized to I zero by exec

read from
program file
by exec

Figure 7.6 Typical memory arrangement

The size(1) command reports the sizes (in bytes) of the text, data, and bss
segments. For example:

$ size /usr/bin/cc /bin/sh
text data bss dec hex filename

79606 1536 916 82058 1408a /usr/bin/cc
619234 21120 18260 658614 aOcb6 /bin/sh

The fourth and fifth columns are the total of the three sizes, displayed in decimal and
hexadecimal, respectively.

Environment List

Each program is also passed an environment list. Like the argument list, the

environment List is an array of character pointers, with each pointer containing the
address of a null-terminated C string. The address of the array of pointers is contained
in the global variable environ:

extern char **environ;

For example, if the environment consisted of five strings, it could look like Figure 7.5.
Here we explicitly show the null bytes at the end of each string. We'll call environ the

Figure 7.5 Environment consisting of five C character strings

environment environment environment
pointer list strings

mvironment poinfer, the array of pointers the environment list, and the strings they point
to the environment strings.

By convention, the environment consists of

environ :

-
-

strings, as shown in Figure 7.5. Most predefined names are entirely uppercase, but t h s
is only a convention.

Historically, most UNIX systems have provided a third argument to the main
function that is the address of the environment list:

+HOME=/home/sar\O

bPATH=:/bin:/usr/bin\O

mSHELL=/bin/bash\O

bUSER=sar\O

int main (int argc, char * a r p [I , char *envp [I) ;

LOGNAME=sar\O

Because IS0 C specifies that the main function be written with two arguments, and
because this third argument provides no benefit over the global variable environ,
POSIX.1 specifies that environ should be used instead of the (possible) third
argument. Access to specific environment variables is normally through the getenv
and putenv functions, described in Section 7.9, instead of through the environ
variable. But to go through the entire environment, the environ pointer must be used.

Stevens, W. Richard.
Advanced programming in the Unix environment / W. Richard Stevens,

Stephen A. Rago.-2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-201-43307-9 (hardcover : a&. paver)
1. Operating systems (Computers) 2 . ' ~ ~ ~ (Computer file) I. Rago,

Stephen A. 11. Title.

